| L(s) = 1 | + (−1.40 − 0.114i)2-s + (−0.591 + 0.341i)3-s + (1.97 + 0.323i)4-s + (2.80 + 1.61i)5-s + (0.872 − 0.413i)6-s + (1.47 − 2.19i)7-s + (−2.74 − 0.682i)8-s + (−1.26 + 2.19i)9-s + (−3.76 − 2.60i)10-s + (−2.08 + 1.20i)11-s + (−1.27 + 0.482i)12-s − 3.09i·13-s + (−2.33 + 2.92i)14-s − 2.21·15-s + (3.79 + 1.27i)16-s + (−1.97 − 3.42i)17-s + ⋯ |
| L(s) = 1 | + (−0.996 − 0.0811i)2-s + (−0.341 + 0.197i)3-s + (0.986 + 0.161i)4-s + (1.25 + 0.724i)5-s + (0.356 − 0.168i)6-s + (0.558 − 0.829i)7-s + (−0.970 − 0.241i)8-s + (−0.422 + 0.731i)9-s + (−1.19 − 0.823i)10-s + (−0.629 + 0.363i)11-s + (−0.368 + 0.139i)12-s − 0.858i·13-s + (−0.624 + 0.781i)14-s − 0.570·15-s + (0.947 + 0.319i)16-s + (−0.479 − 0.830i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.270i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.962 - 0.270i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.611834 + 0.0844103i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.611834 + 0.0844103i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (1.40 + 0.114i)T \) |
| 7 | \( 1 + (-1.47 + 2.19i)T \) |
| good | 3 | \( 1 + (0.591 - 0.341i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + (-2.80 - 1.61i)T + (2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (2.08 - 1.20i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + 3.09iT - 13T^{2} \) |
| 17 | \( 1 + (1.97 + 3.42i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.33 + 1.35i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.37 - 2.37i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.01iT - 29T^{2} \) |
| 31 | \( 1 + (-1.10 - 1.91i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (4.30 + 2.48i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 2.11T + 41T^{2} \) |
| 43 | \( 1 - 11.5iT - 43T^{2} \) |
| 47 | \( 1 + (-3.31 + 5.74i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.23 - 1.29i)T + (26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (-10.6 + 6.13i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-7.54 - 4.35i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5.01 - 2.89i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 6.64T + 71T^{2} \) |
| 73 | \( 1 + (-4.77 - 8.27i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (0.838 - 1.45i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 - 6.47iT - 83T^{2} \) |
| 89 | \( 1 + (6.98 - 12.1i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + 1.37T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.55578447154864819189550335661, −14.25251983643547380788524962837, −13.19370740772628048372413321069, −11.31449475283696151307981987549, −10.53574938682763732186842670613, −9.841370240116647881099657007637, −8.133853564271474174775724217968, −6.89412630493581947890674673305, −5.40246501335624620235710868533, −2.41995605140237068695672227107,
1.98943746563924340842159249736, 5.52137465019387513554749887144, 6.43165254191398264358571800626, 8.483677744659340434324347382347, 9.108491272708213792274685697445, 10.44519995750804405605908736559, 11.73062504600322105389583325660, 12.73081440555178770977936604133, 14.27102942143770519352199642214, 15.44763097694702474512916399738