Properties

Label 2-56-56.27-c1-0-4
Degree $2$
Conductor $56$
Sign $0.467 + 0.883i$
Analytic cond. $0.447162$
Root an. cond. $0.668701$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.5 − 1.32i)2-s + (−1.50 − 1.32i)4-s + 2.64i·7-s + (−2.50 + 1.32i)8-s + 3·9-s − 4·11-s + (3.50 + 1.32i)14-s + (0.500 + 3.96i)16-s + (1.5 − 3.96i)18-s + (−2 + 5.29i)22-s − 5.29i·23-s − 5·25-s + (3.50 − 3.96i)28-s − 10.5i·29-s + (5.50 + 1.32i)32-s + ⋯
L(s)  = 1  + (0.353 − 0.935i)2-s + (−0.750 − 0.661i)4-s + 0.999i·7-s + (−0.883 + 0.467i)8-s + 9-s − 1.20·11-s + (0.935 + 0.353i)14-s + (0.125 + 0.992i)16-s + (0.353 − 0.935i)18-s + (−0.426 + 1.12i)22-s − 1.10i·23-s − 25-s + (0.661 − 0.749i)28-s − 1.96i·29-s + (0.972 + 0.233i)32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.467 + 0.883i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.467 + 0.883i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56\)    =    \(2^{3} \cdot 7\)
Sign: $0.467 + 0.883i$
Analytic conductor: \(0.447162\)
Root analytic conductor: \(0.668701\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{56} (27, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 56,\ (\ :1/2),\ 0.467 + 0.883i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.800900 - 0.482318i\)
\(L(\frac12)\) \(\approx\) \(0.800900 - 0.482318i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-0.5 + 1.32i)T \)
7 \( 1 - 2.64iT \)
good3 \( 1 - 3T^{2} \)
5 \( 1 + 5T^{2} \)
11 \( 1 + 4T + 11T^{2} \)
13 \( 1 + 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 5.29iT - 23T^{2} \)
29 \( 1 + 10.5iT - 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 - 10.5iT - 37T^{2} \)
41 \( 1 - 41T^{2} \)
43 \( 1 - 12T + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 - 10.5iT - 53T^{2} \)
59 \( 1 - 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 - 4T + 67T^{2} \)
71 \( 1 - 5.29iT - 71T^{2} \)
73 \( 1 - 73T^{2} \)
79 \( 1 + 15.8iT - 79T^{2} \)
83 \( 1 - 83T^{2} \)
89 \( 1 - 89T^{2} \)
97 \( 1 - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.12951767717978981967122694928, −13.64269436863226217674293583777, −12.75138234501504294993937161120, −11.83304773630415367156406193917, −10.49478530213177647399054753952, −9.541016767140040973811360193759, −8.078991164281878014507133708164, −5.94378865687961195754566585876, −4.50547011561856594800494603632, −2.47526344280229400760333690349, 3.86980794953892404706401381919, 5.32424572040100304631311636353, 7.06618838234201662451282681267, 7.81834738779393037299948699003, 9.520018906037646861781861458269, 10.75161213019772195520814858253, 12.60658723932896391012029797303, 13.35037996981770931698615231154, 14.36190767075539612348683886818, 15.70342312379845539044273957666

Graph of the $Z$-function along the critical line