L(s) = 1 | + 30·3-s + 32·5-s + 49·7-s + 657·9-s − 624·11-s − 708·13-s + 960·15-s + 934·17-s + 1.85e3·19-s + 1.47e3·21-s − 1.12e3·23-s − 2.10e3·25-s + 1.24e4·27-s − 1.17e3·29-s + 2.90e3·31-s − 1.87e4·33-s + 1.56e3·35-s − 1.24e4·37-s − 2.12e4·39-s + 2.66e3·41-s − 7.14e3·43-s + 2.10e4·45-s − 7.46e3·47-s + 2.40e3·49-s + 2.80e4·51-s − 2.72e4·53-s − 1.99e4·55-s + ⋯ |
L(s) = 1 | + 1.92·3-s + 0.572·5-s + 0.377·7-s + 2.70·9-s − 1.55·11-s − 1.16·13-s + 1.10·15-s + 0.783·17-s + 1.18·19-s + 0.727·21-s − 0.441·23-s − 0.672·25-s + 3.27·27-s − 0.259·29-s + 0.543·31-s − 2.99·33-s + 0.216·35-s − 1.49·37-s − 2.23·39-s + 0.247·41-s − 0.589·43-s + 1.54·45-s − 0.493·47-s + 1/7·49-s + 1.50·51-s − 1.33·53-s − 0.890·55-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(3)\) |
\(\approx\) |
\(3.247762068\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.247762068\) |
\(L(\frac{7}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 - p^{2} T \) |
good | 3 | \( 1 - 10 p T + p^{5} T^{2} \) |
| 5 | \( 1 - 32 T + p^{5} T^{2} \) |
| 11 | \( 1 + 624 T + p^{5} T^{2} \) |
| 13 | \( 1 + 708 T + p^{5} T^{2} \) |
| 17 | \( 1 - 934 T + p^{5} T^{2} \) |
| 19 | \( 1 - 1858 T + p^{5} T^{2} \) |
| 23 | \( 1 + 1120 T + p^{5} T^{2} \) |
| 29 | \( 1 + 1174 T + p^{5} T^{2} \) |
| 31 | \( 1 - 2908 T + p^{5} T^{2} \) |
| 37 | \( 1 + 12462 T + p^{5} T^{2} \) |
| 41 | \( 1 - 2662 T + p^{5} T^{2} \) |
| 43 | \( 1 + 7144 T + p^{5} T^{2} \) |
| 47 | \( 1 + 7468 T + p^{5} T^{2} \) |
| 53 | \( 1 + 27274 T + p^{5} T^{2} \) |
| 59 | \( 1 - 2490 T + p^{5} T^{2} \) |
| 61 | \( 1 + 11096 T + p^{5} T^{2} \) |
| 67 | \( 1 - 39756 T + p^{5} T^{2} \) |
| 71 | \( 1 + 69888 T + p^{5} T^{2} \) |
| 73 | \( 1 - 16450 T + p^{5} T^{2} \) |
| 79 | \( 1 - 78376 T + p^{5} T^{2} \) |
| 83 | \( 1 - 109818 T + p^{5} T^{2} \) |
| 89 | \( 1 + 56966 T + p^{5} T^{2} \) |
| 97 | \( 1 + 115946 T + p^{5} T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.13809402524531324416432590787, −13.52165000273312647350281224748, −12.37326325523858471208190566018, −10.19971052419984600160359067477, −9.563342109165115825828696484751, −8.116522669086459206795458627772, −7.44735158295488635814459990857, −5.05073151177499745827916939669, −3.15049277146873784004904647745, −1.98971742174572232888128510133,
1.98971742174572232888128510133, 3.15049277146873784004904647745, 5.05073151177499745827916939669, 7.44735158295488635814459990857, 8.116522669086459206795458627772, 9.563342109165115825828696484751, 10.19971052419984600160359067477, 12.37326325523858471208190566018, 13.52165000273312647350281224748, 14.13809402524531324416432590787