Properties

Label 2-56-1.1-c5-0-4
Degree $2$
Conductor $56$
Sign $1$
Analytic cond. $8.98149$
Root an. cond. $2.99691$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 30·3-s + 32·5-s + 49·7-s + 657·9-s − 624·11-s − 708·13-s + 960·15-s + 934·17-s + 1.85e3·19-s + 1.47e3·21-s − 1.12e3·23-s − 2.10e3·25-s + 1.24e4·27-s − 1.17e3·29-s + 2.90e3·31-s − 1.87e4·33-s + 1.56e3·35-s − 1.24e4·37-s − 2.12e4·39-s + 2.66e3·41-s − 7.14e3·43-s + 2.10e4·45-s − 7.46e3·47-s + 2.40e3·49-s + 2.80e4·51-s − 2.72e4·53-s − 1.99e4·55-s + ⋯
L(s)  = 1  + 1.92·3-s + 0.572·5-s + 0.377·7-s + 2.70·9-s − 1.55·11-s − 1.16·13-s + 1.10·15-s + 0.783·17-s + 1.18·19-s + 0.727·21-s − 0.441·23-s − 0.672·25-s + 3.27·27-s − 0.259·29-s + 0.543·31-s − 2.99·33-s + 0.216·35-s − 1.49·37-s − 2.23·39-s + 0.247·41-s − 0.589·43-s + 1.54·45-s − 0.493·47-s + 1/7·49-s + 1.50·51-s − 1.33·53-s − 0.890·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 56 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(56\)    =    \(2^{3} \cdot 7\)
Sign: $1$
Analytic conductor: \(8.98149\)
Root analytic conductor: \(2.99691\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 56,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(3.247762068\)
\(L(\frac12)\) \(\approx\) \(3.247762068\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - p^{2} T \)
good3 \( 1 - 10 p T + p^{5} T^{2} \)
5 \( 1 - 32 T + p^{5} T^{2} \)
11 \( 1 + 624 T + p^{5} T^{2} \)
13 \( 1 + 708 T + p^{5} T^{2} \)
17 \( 1 - 934 T + p^{5} T^{2} \)
19 \( 1 - 1858 T + p^{5} T^{2} \)
23 \( 1 + 1120 T + p^{5} T^{2} \)
29 \( 1 + 1174 T + p^{5} T^{2} \)
31 \( 1 - 2908 T + p^{5} T^{2} \)
37 \( 1 + 12462 T + p^{5} T^{2} \)
41 \( 1 - 2662 T + p^{5} T^{2} \)
43 \( 1 + 7144 T + p^{5} T^{2} \)
47 \( 1 + 7468 T + p^{5} T^{2} \)
53 \( 1 + 27274 T + p^{5} T^{2} \)
59 \( 1 - 2490 T + p^{5} T^{2} \)
61 \( 1 + 11096 T + p^{5} T^{2} \)
67 \( 1 - 39756 T + p^{5} T^{2} \)
71 \( 1 + 69888 T + p^{5} T^{2} \)
73 \( 1 - 16450 T + p^{5} T^{2} \)
79 \( 1 - 78376 T + p^{5} T^{2} \)
83 \( 1 - 109818 T + p^{5} T^{2} \)
89 \( 1 + 56966 T + p^{5} T^{2} \)
97 \( 1 + 115946 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.13809402524531324416432590787, −13.52165000273312647350281224748, −12.37326325523858471208190566018, −10.19971052419984600160359067477, −9.563342109165115825828696484751, −8.116522669086459206795458627772, −7.44735158295488635814459990857, −5.05073151177499745827916939669, −3.15049277146873784004904647745, −1.98971742174572232888128510133, 1.98971742174572232888128510133, 3.15049277146873784004904647745, 5.05073151177499745827916939669, 7.44735158295488635814459990857, 8.116522669086459206795458627772, 9.563342109165115825828696484751, 10.19971052419984600160359067477, 12.37326325523858471208190566018, 13.52165000273312647350281224748, 14.13809402524531324416432590787

Graph of the $Z$-function along the critical line