L(s) = 1 | + 30·3-s + 32·5-s + 49·7-s + 657·9-s − 624·11-s − 708·13-s + 960·15-s + 934·17-s + 1.85e3·19-s + 1.47e3·21-s − 1.12e3·23-s − 2.10e3·25-s + 1.24e4·27-s − 1.17e3·29-s + 2.90e3·31-s − 1.87e4·33-s + 1.56e3·35-s − 1.24e4·37-s − 2.12e4·39-s + 2.66e3·41-s − 7.14e3·43-s + 2.10e4·45-s − 7.46e3·47-s + 2.40e3·49-s + 2.80e4·51-s − 2.72e4·53-s − 1.99e4·55-s + ⋯ |
L(s) = 1 | + 1.92·3-s + 0.572·5-s + 0.377·7-s + 2.70·9-s − 1.55·11-s − 1.16·13-s + 1.10·15-s + 0.783·17-s + 1.18·19-s + 0.727·21-s − 0.441·23-s − 0.672·25-s + 3.27·27-s − 0.259·29-s + 0.543·31-s − 2.99·33-s + 0.216·35-s − 1.49·37-s − 2.23·39-s + 0.247·41-s − 0.589·43-s + 1.54·45-s − 0.493·47-s + 1/7·49-s + 1.50·51-s − 1.33·53-s − 0.890·55-s + ⋯ |
Λ(s)=(=(56s/2ΓC(s)L(s)Λ(6−s)
Λ(s)=(=(56s/2ΓC(s+5/2)L(s)Λ(1−s)
Particular Values
L(3) |
≈ |
3.247762068 |
L(21) |
≈ |
3.247762068 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1−p2T |
good | 3 | 1−10pT+p5T2 |
| 5 | 1−32T+p5T2 |
| 11 | 1+624T+p5T2 |
| 13 | 1+708T+p5T2 |
| 17 | 1−934T+p5T2 |
| 19 | 1−1858T+p5T2 |
| 23 | 1+1120T+p5T2 |
| 29 | 1+1174T+p5T2 |
| 31 | 1−2908T+p5T2 |
| 37 | 1+12462T+p5T2 |
| 41 | 1−2662T+p5T2 |
| 43 | 1+7144T+p5T2 |
| 47 | 1+7468T+p5T2 |
| 53 | 1+27274T+p5T2 |
| 59 | 1−2490T+p5T2 |
| 61 | 1+11096T+p5T2 |
| 67 | 1−39756T+p5T2 |
| 71 | 1+69888T+p5T2 |
| 73 | 1−16450T+p5T2 |
| 79 | 1−78376T+p5T2 |
| 83 | 1−109818T+p5T2 |
| 89 | 1+56966T+p5T2 |
| 97 | 1+115946T+p5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.13809402524531324416432590787, −13.52165000273312647350281224748, −12.37326325523858471208190566018, −10.19971052419984600160359067477, −9.563342109165115825828696484751, −8.116522669086459206795458627772, −7.44735158295488635814459990857, −5.05073151177499745827916939669, −3.15049277146873784004904647745, −1.98971742174572232888128510133,
1.98971742174572232888128510133, 3.15049277146873784004904647745, 5.05073151177499745827916939669, 7.44735158295488635814459990857, 8.116522669086459206795458627772, 9.563342109165115825828696484751, 10.19971052419984600160359067477, 12.37326325523858471208190566018, 13.52165000273312647350281224748, 14.13809402524531324416432590787