Properties

Label 2-558-279.214-c1-0-25
Degree $2$
Conductor $558$
Sign $0.552 + 0.833i$
Analytic cond. $4.45565$
Root an. cond. $2.11084$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.104 − 0.994i)2-s + (1.72 + 0.154i)3-s + (−0.978 + 0.207i)4-s + 1.43·5-s + (−0.0266 − 1.73i)6-s + (0.320 − 0.987i)7-s + (0.309 + 0.951i)8-s + (2.95 + 0.533i)9-s + (−0.150 − 1.42i)10-s + (−0.454 + 0.0965i)11-s + (−1.71 + 0.207i)12-s + (−1.95 − 1.42i)13-s + (−1.01 − 0.215i)14-s + (2.48 + 0.222i)15-s + (0.913 − 0.406i)16-s + (4.00 − 4.45i)17-s + ⋯
L(s)  = 1  + (−0.0739 − 0.703i)2-s + (0.996 + 0.0892i)3-s + (−0.489 + 0.103i)4-s + 0.642·5-s + (−0.0108 − 0.707i)6-s + (0.121 − 0.373i)7-s + (0.109 + 0.336i)8-s + (0.984 + 0.177i)9-s + (−0.0475 − 0.452i)10-s + (−0.136 + 0.0291i)11-s + (−0.496 + 0.0599i)12-s + (−0.542 − 0.394i)13-s + (−0.271 − 0.0576i)14-s + (0.640 + 0.0573i)15-s + (0.228 − 0.101i)16-s + (0.971 − 1.07i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.552 + 0.833i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.552 + 0.833i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(558\)    =    \(2 \cdot 3^{2} \cdot 31\)
Sign: $0.552 + 0.833i$
Analytic conductor: \(4.45565\)
Root analytic conductor: \(2.11084\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{558} (493, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 558,\ (\ :1/2),\ 0.552 + 0.833i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.85476 - 0.996476i\)
\(L(\frac12)\) \(\approx\) \(1.85476 - 0.996476i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.104 + 0.994i)T \)
3 \( 1 + (-1.72 - 0.154i)T \)
31 \( 1 + (-2.29 + 5.07i)T \)
good5 \( 1 - 1.43T + 5T^{2} \)
7 \( 1 + (-0.320 + 0.987i)T + (-5.66 - 4.11i)T^{2} \)
11 \( 1 + (0.454 - 0.0965i)T + (10.0 - 4.47i)T^{2} \)
13 \( 1 + (1.95 + 1.42i)T + (4.01 + 12.3i)T^{2} \)
17 \( 1 + (-4.00 + 4.45i)T + (-1.77 - 16.9i)T^{2} \)
19 \( 1 + (-5.35 - 2.38i)T + (12.7 + 14.1i)T^{2} \)
23 \( 1 + (4.59 - 5.10i)T + (-2.40 - 22.8i)T^{2} \)
29 \( 1 + (0.188 + 1.79i)T + (-28.3 + 6.02i)T^{2} \)
37 \( 1 + (-2.52 - 4.36i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (6.24 - 4.53i)T + (12.6 - 38.9i)T^{2} \)
43 \( 1 + (-8.05 + 5.85i)T + (13.2 - 40.8i)T^{2} \)
47 \( 1 + (3.25 - 1.45i)T + (31.4 - 34.9i)T^{2} \)
53 \( 1 + (12.4 + 2.64i)T + (48.4 + 21.5i)T^{2} \)
59 \( 1 + (4.31 - 1.92i)T + (39.4 - 43.8i)T^{2} \)
61 \( 1 + (2.79 - 4.83i)T + (-30.5 - 52.8i)T^{2} \)
67 \( 1 + 5.60T + 67T^{2} \)
71 \( 1 + (2.65 + 0.565i)T + (64.8 + 28.8i)T^{2} \)
73 \( 1 + (10.6 + 11.7i)T + (-7.63 + 72.6i)T^{2} \)
79 \( 1 + (-4.23 - 13.0i)T + (-63.9 + 46.4i)T^{2} \)
83 \( 1 + (1.39 + 0.620i)T + (55.5 + 61.6i)T^{2} \)
89 \( 1 + (-2.48 + 7.66i)T + (-72.0 - 52.3i)T^{2} \)
97 \( 1 + (-5.80 - 6.45i)T + (-10.1 + 96.4i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.20379286738475508779496393039, −9.826346220979912131642160639595, −9.251513846723966018095386679762, −7.75704860304194036396767389808, −7.64284200906138206406503417982, −5.86134099560274402360348089931, −4.79281685597555364671913468356, −3.57254516803707819581467214746, −2.66653814277539455950651091261, −1.40717231478473248401712738406, 1.70497449656072057603904543931, 3.02459819846005791750417157119, 4.33254798614144183436613896357, 5.47811655710544297900675721645, 6.43797661274613011128473945095, 7.48938258501824833760549247095, 8.185366992758315907514988954408, 9.089726944419947380864160486510, 9.763947857533109952586491823827, 10.49714666085619337126774107156

Graph of the $Z$-function along the critical line