L(s) = 1 | + (−0.104 − 0.994i)2-s + (1.66 + 0.491i)3-s + (−0.978 + 0.207i)4-s − 3.28·5-s + (0.315 − 1.70i)6-s + (−0.188 + 0.581i)7-s + (0.309 + 0.951i)8-s + (2.51 + 1.63i)9-s + (0.343 + 3.26i)10-s + (4.75 − 1.00i)11-s + (−1.72 − 0.135i)12-s + (4.04 + 2.94i)13-s + (0.598 + 0.127i)14-s + (−5.45 − 1.61i)15-s + (0.913 − 0.406i)16-s + (−3.14 + 3.49i)17-s + ⋯ |
L(s) = 1 | + (−0.0739 − 0.703i)2-s + (0.958 + 0.283i)3-s + (−0.489 + 0.103i)4-s − 1.46·5-s + (0.128 − 0.695i)6-s + (−0.0714 + 0.219i)7-s + (0.109 + 0.336i)8-s + (0.838 + 0.544i)9-s + (0.108 + 1.03i)10-s + (1.43 − 0.304i)11-s + (−0.498 − 0.0391i)12-s + (1.12 + 0.815i)13-s + (0.159 + 0.0339i)14-s + (−1.40 − 0.416i)15-s + (0.228 − 0.101i)16-s + (−0.763 + 0.848i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 + 0.123i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 + 0.123i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.59649 - 0.0988148i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.59649 - 0.0988148i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.104 + 0.994i)T \) |
| 3 | \( 1 + (-1.66 - 0.491i)T \) |
| 31 | \( 1 + (4.12 + 3.73i)T \) |
good | 5 | \( 1 + 3.28T + 5T^{2} \) |
| 7 | \( 1 + (0.188 - 0.581i)T + (-5.66 - 4.11i)T^{2} \) |
| 11 | \( 1 + (-4.75 + 1.00i)T + (10.0 - 4.47i)T^{2} \) |
| 13 | \( 1 + (-4.04 - 2.94i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (3.14 - 3.49i)T + (-1.77 - 16.9i)T^{2} \) |
| 19 | \( 1 + (-4.23 - 1.88i)T + (12.7 + 14.1i)T^{2} \) |
| 23 | \( 1 + (-5.10 + 5.66i)T + (-2.40 - 22.8i)T^{2} \) |
| 29 | \( 1 + (0.455 + 4.33i)T + (-28.3 + 6.02i)T^{2} \) |
| 37 | \( 1 + (-2.64 - 4.58i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (4.55 - 3.30i)T + (12.6 - 38.9i)T^{2} \) |
| 43 | \( 1 + (2.60 - 1.89i)T + (13.2 - 40.8i)T^{2} \) |
| 47 | \( 1 + (0.477 - 0.212i)T + (31.4 - 34.9i)T^{2} \) |
| 53 | \( 1 + (-0.812 - 0.172i)T + (48.4 + 21.5i)T^{2} \) |
| 59 | \( 1 + (5.95 - 2.65i)T + (39.4 - 43.8i)T^{2} \) |
| 61 | \( 1 + (4.89 - 8.47i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 - 9.21T + 67T^{2} \) |
| 71 | \( 1 + (3.94 + 0.839i)T + (64.8 + 28.8i)T^{2} \) |
| 73 | \( 1 + (-6.22 - 6.91i)T + (-7.63 + 72.6i)T^{2} \) |
| 79 | \( 1 + (4.89 + 15.0i)T + (-63.9 + 46.4i)T^{2} \) |
| 83 | \( 1 + (4.51 + 2.01i)T + (55.5 + 61.6i)T^{2} \) |
| 89 | \( 1 + (-0.946 + 2.91i)T + (-72.0 - 52.3i)T^{2} \) |
| 97 | \( 1 + (11.1 + 12.3i)T + (-10.1 + 96.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00914175692937079287561498971, −9.760992778224888493766556389360, −8.754439572222693133455385287776, −8.562713946178582896233288017468, −7.42807877564424993020936134442, −6.33997353056868816434939417796, −4.38485284134996701726202151418, −3.97241844421576129844043987176, −3.08493904548996425805055148288, −1.42712371396248406400052665804,
1.07769105084102611137457802532, 3.38545333800107033122216581739, 3.83188237812319574691522680302, 5.10739921040188430569338414887, 6.80124200676185112446796216265, 7.18303545320778884235030000670, 8.029260551700515294697811804380, 8.944958393388738182516571311465, 9.362454217528705394900731402250, 10.88058615951026156251499065761