L(s) = 1 | + (−0.5 + 0.866i)2-s + (1.21 − 1.23i)3-s + (−0.499 − 0.866i)4-s + (−2.00 + 3.46i)5-s + (0.465 + 1.66i)6-s + (−0.535 − 0.927i)7-s + 0.999·8-s + (−0.0635 − 2.99i)9-s + (−2.00 − 3.46i)10-s + 0.881·11-s + (−1.67 − 0.430i)12-s + (−2.83 + 4.91i)13-s + 1.07·14-s + (1.86 + 6.68i)15-s + (−0.5 + 0.866i)16-s + (−2.98 + 5.17i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (0.699 − 0.714i)3-s + (−0.249 − 0.433i)4-s + (−0.895 + 1.55i)5-s + (0.190 + 0.681i)6-s + (−0.202 − 0.350i)7-s + 0.353·8-s + (−0.0211 − 0.999i)9-s + (−0.633 − 1.09i)10-s + 0.265·11-s + (−0.484 − 0.124i)12-s + (−0.787 + 1.36i)13-s + 0.286·14-s + (0.481 + 1.72i)15-s + (−0.125 + 0.216i)16-s + (−0.724 + 1.25i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.723 - 0.690i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.723 - 0.690i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.306026 + 0.763364i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.306026 + 0.763364i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (-1.21 + 1.23i)T \) |
| 31 | \( 1 + (1.72 + 5.29i)T \) |
good | 5 | \( 1 + (2.00 - 3.46i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (0.535 + 0.927i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 0.881T + 11T^{2} \) |
| 13 | \( 1 + (2.83 - 4.91i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (2.98 - 5.17i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (0.421 - 0.730i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.62 - 6.27i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (1.05 - 1.82i)T + (-14.5 - 25.1i)T^{2} \) |
| 37 | \( 1 + (3.92 - 6.80i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.03 + 1.80i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.99 - 3.46i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (4.23 - 7.32i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (2.79 + 4.84i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 8.19T + 59T^{2} \) |
| 61 | \( 1 + (4.62 - 8.00i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.12 + 3.67i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (2.16 + 3.74i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-6.63 - 11.4i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (2.53 + 4.38i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 13.5T + 83T^{2} \) |
| 89 | \( 1 + 5.92T + 89T^{2} \) |
| 97 | \( 1 + (-8.34 + 14.4i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16589673780773443885999131268, −10.07055058837710731076907139930, −9.208740817607269679562089490132, −8.197127476225634373286269091892, −7.33242068367553646985749734155, −6.90778778536463769422100413051, −6.20509530574221794161578224129, −4.22641860700353160220021759867, −3.35744163307474399439320825280, −1.95827976991151643616132800313,
0.47506402266723580973927480799, 2.46078939217552833074141495748, 3.58252509420954659722442858276, 4.71390960425199308558499795230, 5.17781050639939803854749455046, 7.29709355789176979444199976862, 8.140547192106956525556092196206, 8.926413777088784473680434532763, 9.259631165215089121890930052885, 10.35842556715483146454525627053