L(s) = 1 | + (0.104 − 0.994i)2-s + (1.65 − 0.513i)3-s + (−0.978 − 0.207i)4-s − 0.102·5-s + (−0.338 − 1.69i)6-s + (−0.417 − 1.28i)7-s + (−0.309 + 0.951i)8-s + (2.47 − 1.70i)9-s + (−0.0106 + 0.101i)10-s + (4.15 + 0.884i)11-s + (−1.72 + 0.158i)12-s + (2.25 − 1.63i)13-s + (−1.32 + 0.281i)14-s + (−0.169 + 0.0526i)15-s + (0.913 + 0.406i)16-s + (−0.205 − 0.228i)17-s + ⋯ |
L(s) = 1 | + (0.0739 − 0.703i)2-s + (0.954 − 0.296i)3-s + (−0.489 − 0.103i)4-s − 0.0457·5-s + (−0.138 − 0.693i)6-s + (−0.157 − 0.485i)7-s + (−0.109 + 0.336i)8-s + (0.823 − 0.566i)9-s + (−0.00338 + 0.0321i)10-s + (1.25 + 0.266i)11-s + (−0.497 + 0.0458i)12-s + (0.625 − 0.454i)13-s + (−0.353 + 0.0751i)14-s + (−0.0437 + 0.0135i)15-s + (0.228 + 0.101i)16-s + (−0.0498 − 0.0553i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0540 + 0.998i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 558 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0540 + 0.998i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.39432 - 1.47187i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.39432 - 1.47187i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.104 + 0.994i)T \) |
| 3 | \( 1 + (-1.65 + 0.513i)T \) |
| 31 | \( 1 + (-2.81 - 4.80i)T \) |
good | 5 | \( 1 + 0.102T + 5T^{2} \) |
| 7 | \( 1 + (0.417 + 1.28i)T + (-5.66 + 4.11i)T^{2} \) |
| 11 | \( 1 + (-4.15 - 0.884i)T + (10.0 + 4.47i)T^{2} \) |
| 13 | \( 1 + (-2.25 + 1.63i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (0.205 + 0.228i)T + (-1.77 + 16.9i)T^{2} \) |
| 19 | \( 1 + (2.08 - 0.929i)T + (12.7 - 14.1i)T^{2} \) |
| 23 | \( 1 + (4.13 + 4.59i)T + (-2.40 + 22.8i)T^{2} \) |
| 29 | \( 1 + (-0.963 + 9.16i)T + (-28.3 - 6.02i)T^{2} \) |
| 37 | \( 1 + (5.95 - 10.3i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.36 - 3.16i)T + (12.6 + 38.9i)T^{2} \) |
| 43 | \( 1 + (2.67 + 1.94i)T + (13.2 + 40.8i)T^{2} \) |
| 47 | \( 1 + (-2.20 - 0.981i)T + (31.4 + 34.9i)T^{2} \) |
| 53 | \( 1 + (1.84 - 0.392i)T + (48.4 - 21.5i)T^{2} \) |
| 59 | \( 1 + (-8.54 - 3.80i)T + (39.4 + 43.8i)T^{2} \) |
| 61 | \( 1 + (-7.33 - 12.7i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 - 7.57T + 67T^{2} \) |
| 71 | \( 1 + (8.59 - 1.82i)T + (64.8 - 28.8i)T^{2} \) |
| 73 | \( 1 + (8.68 - 9.64i)T + (-7.63 - 72.6i)T^{2} \) |
| 79 | \( 1 + (2.41 - 7.43i)T + (-63.9 - 46.4i)T^{2} \) |
| 83 | \( 1 + (-2.67 + 1.19i)T + (55.5 - 61.6i)T^{2} \) |
| 89 | \( 1 + (1.84 + 5.68i)T + (-72.0 + 52.3i)T^{2} \) |
| 97 | \( 1 + (5.14 - 5.71i)T + (-10.1 - 96.4i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.21020003237026828655659774413, −9.913327789809461976869737650576, −8.695369837182232064445229910263, −8.207676864065546562710416123190, −6.97073928786421782803974220873, −6.09587749937140996228516819291, −4.28980685427708325859182499160, −3.78362287506626610623010172942, −2.48570297460808223199075235151, −1.20220240635787587623263709577,
1.87561295652461507314710182403, 3.54182771622649101649627073950, 4.16227985308319941005127307543, 5.56051145123512852002244538593, 6.53452487130441633829864702902, 7.46466127308354288641094171304, 8.492613877902463269024400601567, 9.063502960241793149373077528827, 9.701999759024121274119214862471, 10.90932123142834538005202452404