Properties

Label 2-552-184.101-c1-0-43
Degree $2$
Conductor $552$
Sign $0.938 + 0.345i$
Analytic cond. $4.40774$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.41 − 0.00887i)2-s + (0.755 − 0.654i)3-s + (1.99 − 0.0250i)4-s + (2.01 − 0.290i)5-s + (1.06 − 0.932i)6-s + (0.214 − 0.470i)7-s + (2.82 − 0.0532i)8-s + (0.142 − 0.989i)9-s + (2.85 − 0.428i)10-s + (−0.754 + 2.56i)11-s + (1.49 − 1.32i)12-s + (−5.11 + 2.33i)13-s + (0.299 − 0.666i)14-s + (1.33 − 1.54i)15-s + (3.99 − 0.100i)16-s + (−3.23 − 2.07i)17-s + ⋯
L(s)  = 1  + (0.999 − 0.00627i)2-s + (0.436 − 0.378i)3-s + (0.999 − 0.0125i)4-s + (0.902 − 0.129i)5-s + (0.433 − 0.380i)6-s + (0.0811 − 0.177i)7-s + (0.999 − 0.0188i)8-s + (0.0474 − 0.329i)9-s + (0.902 − 0.135i)10-s + (−0.227 + 0.774i)11-s + (0.431 − 0.383i)12-s + (−1.41 + 0.647i)13-s + (0.0800 − 0.178i)14-s + (0.344 − 0.398i)15-s + (0.999 − 0.0250i)16-s + (−0.784 − 0.504i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.938 + 0.345i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.938 + 0.345i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $0.938 + 0.345i$
Analytic conductor: \(4.40774\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{552} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :1/2),\ 0.938 + 0.345i)\)

Particular Values

\(L(1)\) \(\approx\) \(3.28759 - 0.585461i\)
\(L(\frac12)\) \(\approx\) \(3.28759 - 0.585461i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.41 + 0.00887i)T \)
3 \( 1 + (-0.755 + 0.654i)T \)
23 \( 1 + (2.90 + 3.81i)T \)
good5 \( 1 + (-2.01 + 0.290i)T + (4.79 - 1.40i)T^{2} \)
7 \( 1 + (-0.214 + 0.470i)T + (-4.58 - 5.29i)T^{2} \)
11 \( 1 + (0.754 - 2.56i)T + (-9.25 - 5.94i)T^{2} \)
13 \( 1 + (5.11 - 2.33i)T + (8.51 - 9.82i)T^{2} \)
17 \( 1 + (3.23 + 2.07i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (-0.853 - 1.32i)T + (-7.89 + 17.2i)T^{2} \)
29 \( 1 + (1.80 - 2.80i)T + (-12.0 - 26.3i)T^{2} \)
31 \( 1 + (-2.62 + 3.02i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 + (6.67 + 0.960i)T + (35.5 + 10.4i)T^{2} \)
41 \( 1 + (-0.979 - 6.81i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (-7.51 + 6.50i)T + (6.11 - 42.5i)T^{2} \)
47 \( 1 - 7.60T + 47T^{2} \)
53 \( 1 + (1.29 + 0.592i)T + (34.7 + 40.0i)T^{2} \)
59 \( 1 + (0.925 - 0.422i)T + (38.6 - 44.5i)T^{2} \)
61 \( 1 + (4.46 + 3.87i)T + (8.68 + 60.3i)T^{2} \)
67 \( 1 + (0.456 + 1.55i)T + (-56.3 + 36.2i)T^{2} \)
71 \( 1 + (14.2 - 4.17i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (-10.3 + 6.62i)T + (30.3 - 66.4i)T^{2} \)
79 \( 1 + (3.77 + 8.27i)T + (-51.7 + 59.7i)T^{2} \)
83 \( 1 + (-5.36 - 0.770i)T + (79.6 + 23.3i)T^{2} \)
89 \( 1 + (-8.92 - 10.3i)T + (-12.6 + 88.0i)T^{2} \)
97 \( 1 + (0.0860 + 0.598i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.75902716665670361119577304342, −9.902887693537020564283273019776, −9.128658635714864916387267270520, −7.67520872681392541110019258375, −7.06235843959917799656193173228, −6.11768615970280814264754599924, −5.02498854539733163303654527919, −4.19634961324550978964413532041, −2.57275949159163970928752578568, −1.92630812082536602987584803168, 2.09447512200242956758568237016, 2.92865201171089455372141989446, 4.18032208579395675101357642394, 5.32846571710687683130440759759, 5.90260303208849302056275289712, 7.11577581154328273688010850864, 8.037533198663081529061032261901, 9.206576820714739563235374534861, 10.16322550983338068794002384789, 10.74168713188891433419322379529

Graph of the $Z$-function along the critical line