Properties

Label 2-552-184.101-c1-0-33
Degree $2$
Conductor $552$
Sign $0.0773 + 0.997i$
Analytic cond. $4.40774$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.969 + 1.02i)2-s + (0.755 − 0.654i)3-s + (−0.121 − 1.99i)4-s + (−2.07 + 0.298i)5-s + (−0.0579 + 1.41i)6-s + (1.51 − 3.31i)7-s + (2.17 + 1.80i)8-s + (0.142 − 0.989i)9-s + (1.70 − 2.42i)10-s + (−1.05 + 3.58i)11-s + (−1.39 − 1.42i)12-s + (1.79 − 0.821i)13-s + (1.94 + 4.77i)14-s + (−1.37 + 1.58i)15-s + (−3.97 + 0.485i)16-s + (−5.87 − 3.77i)17-s + ⋯
L(s)  = 1  + (−0.685 + 0.728i)2-s + (0.436 − 0.378i)3-s + (−0.0608 − 0.998i)4-s + (−0.928 + 0.133i)5-s + (−0.0236 + 0.576i)6-s + (0.572 − 1.25i)7-s + (0.768 + 0.639i)8-s + (0.0474 − 0.329i)9-s + (0.539 − 0.768i)10-s + (−0.317 + 1.08i)11-s + (−0.403 − 0.412i)12-s + (0.498 − 0.227i)13-s + (0.520 + 1.27i)14-s + (−0.354 + 0.409i)15-s + (−0.992 + 0.121i)16-s + (−1.42 − 0.915i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0773 + 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0773 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $0.0773 + 0.997i$
Analytic conductor: \(4.40774\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{552} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :1/2),\ 0.0773 + 0.997i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.541773 - 0.501371i\)
\(L(\frac12)\) \(\approx\) \(0.541773 - 0.501371i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.969 - 1.02i)T \)
3 \( 1 + (-0.755 + 0.654i)T \)
23 \( 1 + (1.06 + 4.67i)T \)
good5 \( 1 + (2.07 - 0.298i)T + (4.79 - 1.40i)T^{2} \)
7 \( 1 + (-1.51 + 3.31i)T + (-4.58 - 5.29i)T^{2} \)
11 \( 1 + (1.05 - 3.58i)T + (-9.25 - 5.94i)T^{2} \)
13 \( 1 + (-1.79 + 0.821i)T + (8.51 - 9.82i)T^{2} \)
17 \( 1 + (5.87 + 3.77i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (0.728 + 1.13i)T + (-7.89 + 17.2i)T^{2} \)
29 \( 1 + (-4.71 + 7.34i)T + (-12.0 - 26.3i)T^{2} \)
31 \( 1 + (-2.50 + 2.89i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 + (6.24 + 0.897i)T + (35.5 + 10.4i)T^{2} \)
41 \( 1 + (0.777 + 5.40i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (3.65 - 3.16i)T + (6.11 - 42.5i)T^{2} \)
47 \( 1 + 4.13T + 47T^{2} \)
53 \( 1 + (-6.04 - 2.76i)T + (34.7 + 40.0i)T^{2} \)
59 \( 1 + (3.91 - 1.78i)T + (38.6 - 44.5i)T^{2} \)
61 \( 1 + (-3.49 - 3.02i)T + (8.68 + 60.3i)T^{2} \)
67 \( 1 + (1.71 + 5.84i)T + (-56.3 + 36.2i)T^{2} \)
71 \( 1 + (-8.60 + 2.52i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (-12.0 + 7.75i)T + (30.3 - 66.4i)T^{2} \)
79 \( 1 + (-0.356 - 0.779i)T + (-51.7 + 59.7i)T^{2} \)
83 \( 1 + (9.02 + 1.29i)T + (79.6 + 23.3i)T^{2} \)
89 \( 1 + (-9.92 - 11.4i)T + (-12.6 + 88.0i)T^{2} \)
97 \( 1 + (-1.57 - 10.9i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.51436948997409753596573168538, −9.595137338254850491795878991466, −8.459741437707411478462566373623, −7.86996549012883003691890017477, −7.14833489531785092065545683426, −6.54026178134355028070956897119, −4.77890848192339335644898606361, −4.13571297923186465379923753931, −2.20591669000533743494797856303, −0.50298260928968874269450999258, 1.80503406704238814908619608504, 3.10718207488193421677234464339, 3.99298231307158248188326861770, 5.17973467124569134045673535857, 6.63655843717561037238170124439, 8.075450737480566797484961503833, 8.520448497078072518773683926780, 8.899182893648663200580264453385, 10.19951795020541127798969876734, 11.12210353618618024895009542979

Graph of the $Z$-function along the critical line