Properties

Label 2-552-184.101-c1-0-16
Degree $2$
Conductor $552$
Sign $0.257 - 0.966i$
Analytic cond. $4.40774$
Root an. cond. $2.09946$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.39 − 0.223i)2-s + (−0.755 + 0.654i)3-s + (1.89 − 0.625i)4-s + (−0.907 + 0.130i)5-s + (−0.908 + 1.08i)6-s + (−1.67 + 3.67i)7-s + (2.51 − 1.29i)8-s + (0.142 − 0.989i)9-s + (−1.23 + 0.385i)10-s + (−1.75 + 5.96i)11-s + (−1.02 + 1.71i)12-s + (0.258 − 0.117i)13-s + (−1.52 + 5.51i)14-s + (0.600 − 0.692i)15-s + (3.21 − 2.37i)16-s + (3.14 + 2.02i)17-s + ⋯
L(s)  = 1  + (0.987 − 0.158i)2-s + (−0.436 + 0.378i)3-s + (0.949 − 0.312i)4-s + (−0.405 + 0.0583i)5-s + (−0.370 + 0.442i)6-s + (−0.634 + 1.39i)7-s + (0.888 − 0.458i)8-s + (0.0474 − 0.329i)9-s + (−0.391 + 0.121i)10-s + (−0.527 + 1.79i)11-s + (−0.296 + 0.495i)12-s + (0.0716 − 0.0327i)13-s + (−0.406 + 1.47i)14-s + (0.154 − 0.178i)15-s + (0.804 − 0.593i)16-s + (0.762 + 0.490i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.257 - 0.966i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 552 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.257 - 0.966i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(552\)    =    \(2^{3} \cdot 3 \cdot 23\)
Sign: $0.257 - 0.966i$
Analytic conductor: \(4.40774\)
Root analytic conductor: \(2.09946\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{552} (469, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 552,\ (\ :1/2),\ 0.257 - 0.966i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.53632 + 1.17990i\)
\(L(\frac12)\) \(\approx\) \(1.53632 + 1.17990i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (-1.39 + 0.223i)T \)
3 \( 1 + (0.755 - 0.654i)T \)
23 \( 1 + (-4.60 + 1.34i)T \)
good5 \( 1 + (0.907 - 0.130i)T + (4.79 - 1.40i)T^{2} \)
7 \( 1 + (1.67 - 3.67i)T + (-4.58 - 5.29i)T^{2} \)
11 \( 1 + (1.75 - 5.96i)T + (-9.25 - 5.94i)T^{2} \)
13 \( 1 + (-0.258 + 0.117i)T + (8.51 - 9.82i)T^{2} \)
17 \( 1 + (-3.14 - 2.02i)T + (7.06 + 15.4i)T^{2} \)
19 \( 1 + (-0.0815 - 0.126i)T + (-7.89 + 17.2i)T^{2} \)
29 \( 1 + (-4.40 + 6.85i)T + (-12.0 - 26.3i)T^{2} \)
31 \( 1 + (0.844 - 0.974i)T + (-4.41 - 30.6i)T^{2} \)
37 \( 1 + (3.53 + 0.507i)T + (35.5 + 10.4i)T^{2} \)
41 \( 1 + (-1.27 - 8.85i)T + (-39.3 + 11.5i)T^{2} \)
43 \( 1 + (-4.63 + 4.01i)T + (6.11 - 42.5i)T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 + (-2.73 - 1.24i)T + (34.7 + 40.0i)T^{2} \)
59 \( 1 + (-13.0 + 5.95i)T + (38.6 - 44.5i)T^{2} \)
61 \( 1 + (8.58 + 7.43i)T + (8.68 + 60.3i)T^{2} \)
67 \( 1 + (-2.35 - 8.01i)T + (-56.3 + 36.2i)T^{2} \)
71 \( 1 + (-8.58 + 2.52i)T + (59.7 - 38.3i)T^{2} \)
73 \( 1 + (-2.88 + 1.85i)T + (30.3 - 66.4i)T^{2} \)
79 \( 1 + (0.819 + 1.79i)T + (-51.7 + 59.7i)T^{2} \)
83 \( 1 + (14.2 + 2.05i)T + (79.6 + 23.3i)T^{2} \)
89 \( 1 + (-4.87 - 5.62i)T + (-12.6 + 88.0i)T^{2} \)
97 \( 1 + (1.04 + 7.28i)T + (-93.0 + 27.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23834146684853705380223704553, −10.05292113752158755720358715201, −9.653396146576619956168592489480, −8.173798651046683443377948105488, −7.08772705175870833787376841605, −6.15652729445425145283312808491, −5.28999115770168008828751281396, −4.47425907148695870945731933207, −3.24574427925411913926022095548, −2.12879494408879344495153611399, 0.876639642530133937563115007904, 3.07272077517018284065548352552, 3.76600433800400280896570355252, 5.06493360674656980132519273196, 5.94597327209768698200503501312, 6.92260086107195009623276608419, 7.55202836742450741022880905232, 8.517335533805162535949788176530, 10.14052788273665675654566460794, 10.89371286290608432767800752012

Graph of the $Z$-function along the critical line