L(s) = 1 | + (−0.809 − 0.587i)2-s + (0.118 − 0.363i)3-s + (0.309 + 0.951i)4-s + (−0.309 + 0.224i)6-s + (0.927 + 2.85i)7-s + (0.309 − 0.951i)8-s + (2.30 + 1.67i)9-s + (−1.23 + 3.07i)11-s + 0.381·12-s + (−5.04 − 3.66i)13-s + (0.927 − 2.85i)14-s + (−0.809 + 0.587i)16-s + (−3.54 + 2.57i)17-s + (−0.881 − 2.71i)18-s + (−1.80 + 5.56i)19-s + ⋯ |
L(s) = 1 | + (−0.572 − 0.415i)2-s + (0.0681 − 0.209i)3-s + (0.154 + 0.475i)4-s + (−0.126 + 0.0916i)6-s + (0.350 + 1.07i)7-s + (0.109 − 0.336i)8-s + (0.769 + 0.559i)9-s + (−0.372 + 0.927i)11-s + 0.110·12-s + (−1.39 − 1.01i)13-s + (0.247 − 0.762i)14-s + (−0.202 + 0.146i)16-s + (−0.859 + 0.624i)17-s + (−0.207 − 0.639i)18-s + (−0.415 + 1.27i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.350 - 0.936i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.350 - 0.936i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.735043 + 0.509733i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.735043 + 0.509733i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 + 0.587i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (1.23 - 3.07i)T \) |
good | 3 | \( 1 + (-0.118 + 0.363i)T + (-2.42 - 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.927 - 2.85i)T + (-5.66 + 4.11i)T^{2} \) |
| 13 | \( 1 + (5.04 + 3.66i)T + (4.01 + 12.3i)T^{2} \) |
| 17 | \( 1 + (3.54 - 2.57i)T + (5.25 - 16.1i)T^{2} \) |
| 19 | \( 1 + (1.80 - 5.56i)T + (-15.3 - 11.1i)T^{2} \) |
| 23 | \( 1 + 1.85T + 23T^{2} \) |
| 29 | \( 1 + (0.163 + 0.502i)T + (-23.4 + 17.0i)T^{2} \) |
| 31 | \( 1 + (-2.42 - 1.76i)T + (9.57 + 29.4i)T^{2} \) |
| 37 | \( 1 + (-3.26 - 10.0i)T + (-29.9 + 21.7i)T^{2} \) |
| 41 | \( 1 + (-1.14 + 3.52i)T + (-33.1 - 24.0i)T^{2} \) |
| 43 | \( 1 - 10.7T + 43T^{2} \) |
| 47 | \( 1 + (0.454 - 1.40i)T + (-38.0 - 27.6i)T^{2} \) |
| 53 | \( 1 + (4.35 + 3.16i)T + (16.3 + 50.4i)T^{2} \) |
| 59 | \( 1 + (2.07 + 6.37i)T + (-47.7 + 34.6i)T^{2} \) |
| 61 | \( 1 + (7.04 - 5.11i)T + (18.8 - 58.0i)T^{2} \) |
| 67 | \( 1 + 0.0901T + 67T^{2} \) |
| 71 | \( 1 + (-10.7 + 7.83i)T + (21.9 - 67.5i)T^{2} \) |
| 73 | \( 1 + (-3.57 - 10.9i)T + (-59.0 + 42.9i)T^{2} \) |
| 79 | \( 1 + (-6.28 - 4.56i)T + (24.4 + 75.1i)T^{2} \) |
| 83 | \( 1 + (-3.04 + 2.21i)T + (25.6 - 78.9i)T^{2} \) |
| 89 | \( 1 - 11.1T + 89T^{2} \) |
| 97 | \( 1 + (-0.763 - 0.555i)T + (29.9 + 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69782391937247636616012241501, −10.12859744890262876612136299829, −9.350384370002206525449296772879, −8.072654887682857637070886038868, −7.81734780706374642276326921818, −6.57992962651494482389499689621, −5.29239689561598637077463624090, −4.34435503366885156396654507971, −2.59941145187097577638555932390, −1.86499911203553133826396252197,
0.60222613166739171985762927008, 2.41060819445890494308896934530, 4.15908345950678906327964764053, 4.83197046878079002583862819252, 6.35134160901839102336078310330, 7.15560489844858141095753169786, 7.74891599804994822511688363903, 9.133163771003091378723852564690, 9.465426773853650858798246266838, 10.64931511159721196670192245220