L(s) = 1 | + (−0.809 + 0.587i)2-s + (0.650 + 2.00i)3-s + (0.309 − 0.951i)4-s + (−1.70 − 1.23i)6-s + (0.675 − 2.07i)7-s + (0.309 + 0.951i)8-s + (−1.15 + 0.841i)9-s + (1.92 + 2.69i)11-s + 2.10·12-s + (−5.11 + 3.71i)13-s + (0.675 + 2.07i)14-s + (−0.809 − 0.587i)16-s + (1.34 + 0.980i)17-s + (0.442 − 1.36i)18-s + (1.82 + 5.60i)19-s + ⋯ |
L(s) = 1 | + (−0.572 + 0.415i)2-s + (0.375 + 1.15i)3-s + (0.154 − 0.475i)4-s + (−0.695 − 0.505i)6-s + (0.255 − 0.785i)7-s + (0.109 + 0.336i)8-s + (−0.386 + 0.280i)9-s + (0.581 + 0.813i)11-s + 0.607·12-s + (−1.41 + 1.03i)13-s + (0.180 + 0.555i)14-s + (−0.202 − 0.146i)16-s + (0.327 + 0.237i)17-s + (0.104 − 0.320i)18-s + (0.417 + 1.28i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.561 - 0.827i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.561 - 0.827i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.557805 + 1.05263i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.557805 + 1.05263i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.809 - 0.587i)T \) |
| 5 | \( 1 \) |
| 11 | \( 1 + (-1.92 - 2.69i)T \) |
good | 3 | \( 1 + (-0.650 - 2.00i)T + (-2.42 + 1.76i)T^{2} \) |
| 7 | \( 1 + (-0.675 + 2.07i)T + (-5.66 - 4.11i)T^{2} \) |
| 13 | \( 1 + (5.11 - 3.71i)T + (4.01 - 12.3i)T^{2} \) |
| 17 | \( 1 + (-1.34 - 0.980i)T + (5.25 + 16.1i)T^{2} \) |
| 19 | \( 1 + (-1.82 - 5.60i)T + (-15.3 + 11.1i)T^{2} \) |
| 23 | \( 1 - 3.26T + 23T^{2} \) |
| 29 | \( 1 + (1.95 - 6.00i)T + (-23.4 - 17.0i)T^{2} \) |
| 31 | \( 1 + (3.74 - 2.72i)T + (9.57 - 29.4i)T^{2} \) |
| 37 | \( 1 + (-0.849 + 2.61i)T + (-29.9 - 21.7i)T^{2} \) |
| 41 | \( 1 + (2.89 + 8.90i)T + (-33.1 + 24.0i)T^{2} \) |
| 43 | \( 1 + 1.29T + 43T^{2} \) |
| 47 | \( 1 + (0.582 + 1.79i)T + (-38.0 + 27.6i)T^{2} \) |
| 53 | \( 1 + (-6.36 + 4.62i)T + (16.3 - 50.4i)T^{2} \) |
| 59 | \( 1 + (-2.47 + 7.63i)T + (-47.7 - 34.6i)T^{2} \) |
| 61 | \( 1 + (-3.51 - 2.55i)T + (18.8 + 58.0i)T^{2} \) |
| 67 | \( 1 + 5.61T + 67T^{2} \) |
| 71 | \( 1 + (11.1 + 8.10i)T + (21.9 + 67.5i)T^{2} \) |
| 73 | \( 1 + (4.32 - 13.3i)T + (-59.0 - 42.9i)T^{2} \) |
| 79 | \( 1 + (1.40 - 1.02i)T + (24.4 - 75.1i)T^{2} \) |
| 83 | \( 1 + (-7.25 - 5.27i)T + (25.6 + 78.9i)T^{2} \) |
| 89 | \( 1 - 13.3T + 89T^{2} \) |
| 97 | \( 1 + (-9.72 + 7.06i)T + (29.9 - 92.2i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.62074116614615831428645722937, −10.06449587464972092913424780105, −9.413460237694246293982684324282, −8.710084571123369228014191852062, −7.35371345332676824352463980707, −6.99606331656168775224528874901, −5.35278491314745978375729539211, −4.47291935167079687935222358407, −3.59316705458461500046740865596, −1.75255474248032739051245266165,
0.831261255819731931866888740491, 2.31857504574534269189189689471, 3.04748404304134674578333506743, 4.89868559367707503641232195070, 6.08044256273192285728790867419, 7.24814430861945074701661428347, 7.77296055558466941921142656990, 8.709810524315394074632931114422, 9.424587577136005897628664293945, 10.46273312124504642728511386559