L(s) = 1 | − 17·2-s − 6.52e4·4-s + 3.90e5·5-s + 9.88e6·7-s + 2.22e6·8-s + 4.30e7·9-s − 6.64e6·10-s + 2.14e8·11-s + 6.78e8·13-s − 1.68e8·14-s + 4.23e9·16-s + 1.39e10·17-s − 7.31e8·18-s − 2.54e10·20-s − 3.64e9·22-s + 1.52e11·25-s − 1.15e10·26-s − 6.45e11·28-s − 1.20e12·31-s − 2.17e11·32-s − 2.36e11·34-s + 3.86e12·35-s − 2.80e12·36-s + 8.68e11·40-s − 7.61e12·43-s − 1.39e13·44-s + 1.68e13·45-s + ⋯ |
L(s) = 1 | − 0.0664·2-s − 0.995·4-s + 5-s + 1.71·7-s + 0.132·8-s + 9-s − 0.0664·10-s + 11-s + 0.831·13-s − 0.113·14-s + 0.986·16-s + 1.99·17-s − 0.0664·18-s − 0.995·20-s − 0.0664·22-s + 25-s − 0.0551·26-s − 1.70·28-s − 1.41·31-s − 0.198·32-s − 0.132·34-s + 1.71·35-s − 0.995·36-s + 0.132·40-s − 0.651·43-s − 0.995·44-s + 45-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(17-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+8) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{17}{2})\) |
\(\approx\) |
\(3.604269909\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.604269909\) |
\(L(9)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 - p^{8} T \) |
| 11 | \( 1 - p^{8} T \) |
good | 2 | \( 1 + 17 T + p^{16} T^{2} \) |
| 3 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 7 | \( 1 - 9886078 T + p^{16} T^{2} \) |
| 13 | \( 1 - 678010558 T + p^{16} T^{2} \) |
| 17 | \( 1 - 13921943038 T + p^{16} T^{2} \) |
| 19 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 23 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 29 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 31 | \( 1 + 1206552215038 T + p^{16} T^{2} \) |
| 37 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 41 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 43 | \( 1 + 7613774646722 T + p^{16} T^{2} \) |
| 47 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 53 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 59 | \( 1 + 140214236988478 T + p^{16} T^{2} \) |
| 61 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 67 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 71 | \( 1 + 77726196639358 T + p^{16} T^{2} \) |
| 73 | \( 1 + 1564720076407682 T + p^{16} T^{2} \) |
| 79 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
| 83 | \( 1 + 3613022253130562 T + p^{16} T^{2} \) |
| 89 | \( 1 - 7841390882244482 T + p^{16} T^{2} \) |
| 97 | \( ( 1 - p^{8} T )( 1 + p^{8} T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.07937498799510422097805548968, −10.65882628918100187257894316811, −9.647501157488506052792719638095, −8.642864920731345997177030570406, −7.51254922227420762832984551575, −5.78057515393475360659004218140, −4.83717085441055109790416199158, −3.71290232737277187300001029010, −1.46745121703469827642332011530, −1.25877530102447357949494549842,
1.25877530102447357949494549842, 1.46745121703469827642332011530, 3.71290232737277187300001029010, 4.83717085441055109790416199158, 5.78057515393475360659004218140, 7.51254922227420762832984551575, 8.642864920731345997177030570406, 9.647501157488506052792719638095, 10.65882628918100187257894316811, 12.07937498799510422097805548968