Properties

Label 2-55-55.54-c16-0-74
Degree $2$
Conductor $55$
Sign $1$
Analytic cond. $89.2784$
Root an. cond. $9.44873$
Motivic weight $16$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 17·2-s − 6.52e4·4-s + 3.90e5·5-s + 9.88e6·7-s + 2.22e6·8-s + 4.30e7·9-s − 6.64e6·10-s + 2.14e8·11-s + 6.78e8·13-s − 1.68e8·14-s + 4.23e9·16-s + 1.39e10·17-s − 7.31e8·18-s − 2.54e10·20-s − 3.64e9·22-s + 1.52e11·25-s − 1.15e10·26-s − 6.45e11·28-s − 1.20e12·31-s − 2.17e11·32-s − 2.36e11·34-s + 3.86e12·35-s − 2.80e12·36-s + 8.68e11·40-s − 7.61e12·43-s − 1.39e13·44-s + 1.68e13·45-s + ⋯
L(s)  = 1  − 0.0664·2-s − 0.995·4-s + 5-s + 1.71·7-s + 0.132·8-s + 9-s − 0.0664·10-s + 11-s + 0.831·13-s − 0.113·14-s + 0.986·16-s + 1.99·17-s − 0.0664·18-s − 0.995·20-s − 0.0664·22-s + 25-s − 0.0551·26-s − 1.70·28-s − 1.41·31-s − 0.198·32-s − 0.132·34-s + 1.71·35-s − 0.995·36-s + 0.132·40-s − 0.651·43-s − 0.995·44-s + 45-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(17-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+8) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $1$
Analytic conductor: \(89.2784\)
Root analytic conductor: \(9.44873\)
Motivic weight: \(16\)
Rational: yes
Arithmetic: yes
Character: $\chi_{55} (54, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :8),\ 1)\)

Particular Values

\(L(\frac{17}{2})\) \(\approx\) \(3.604269909\)
\(L(\frac12)\) \(\approx\) \(3.604269909\)
\(L(9)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - p^{8} T \)
11 \( 1 - p^{8} T \)
good2 \( 1 + 17 T + p^{16} T^{2} \)
3 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
7 \( 1 - 9886078 T + p^{16} T^{2} \)
13 \( 1 - 678010558 T + p^{16} T^{2} \)
17 \( 1 - 13921943038 T + p^{16} T^{2} \)
19 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
23 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
29 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
31 \( 1 + 1206552215038 T + p^{16} T^{2} \)
37 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
41 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
43 \( 1 + 7613774646722 T + p^{16} T^{2} \)
47 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
53 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
59 \( 1 + 140214236988478 T + p^{16} T^{2} \)
61 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
67 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
71 \( 1 + 77726196639358 T + p^{16} T^{2} \)
73 \( 1 + 1564720076407682 T + p^{16} T^{2} \)
79 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
83 \( 1 + 3613022253130562 T + p^{16} T^{2} \)
89 \( 1 - 7841390882244482 T + p^{16} T^{2} \)
97 \( ( 1 - p^{8} T )( 1 + p^{8} T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.07937498799510422097805548968, −10.65882628918100187257894316811, −9.647501157488506052792719638095, −8.642864920731345997177030570406, −7.51254922227420762832984551575, −5.78057515393475360659004218140, −4.83717085441055109790416199158, −3.71290232737277187300001029010, −1.46745121703469827642332011530, −1.25877530102447357949494549842, 1.25877530102447357949494549842, 1.46745121703469827642332011530, 3.71290232737277187300001029010, 4.83717085441055109790416199158, 5.78057515393475360659004218140, 7.51254922227420762832984551575, 8.642864920731345997177030570406, 9.647501157488506052792719638095, 10.65882628918100187257894316811, 12.07937498799510422097805548968

Graph of the $Z$-function along the critical line