L(s) = 1 | − 17·2-s − 6.52e4·4-s + 3.90e5·5-s + 9.88e6·7-s + 2.22e6·8-s + 4.30e7·9-s − 6.64e6·10-s + 2.14e8·11-s + 6.78e8·13-s − 1.68e8·14-s + 4.23e9·16-s + 1.39e10·17-s − 7.31e8·18-s − 2.54e10·20-s − 3.64e9·22-s + 1.52e11·25-s − 1.15e10·26-s − 6.45e11·28-s − 1.20e12·31-s − 2.17e11·32-s − 2.36e11·34-s + 3.86e12·35-s − 2.80e12·36-s + 8.68e11·40-s − 7.61e12·43-s − 1.39e13·44-s + 1.68e13·45-s + ⋯ |
L(s) = 1 | − 0.0664·2-s − 0.995·4-s + 5-s + 1.71·7-s + 0.132·8-s + 9-s − 0.0664·10-s + 11-s + 0.831·13-s − 0.113·14-s + 0.986·16-s + 1.99·17-s − 0.0664·18-s − 0.995·20-s − 0.0664·22-s + 25-s − 0.0551·26-s − 1.70·28-s − 1.41·31-s − 0.198·32-s − 0.132·34-s + 1.71·35-s − 0.995·36-s + 0.132·40-s − 0.651·43-s − 0.995·44-s + 45-s + ⋯ |
Λ(s)=(=(55s/2ΓC(s)L(s)Λ(17−s)
Λ(s)=(=(55s/2ΓC(s+8)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
55
= 5⋅11
|
Sign: |
1
|
Analytic conductor: |
89.2784 |
Root analytic conductor: |
9.44873 |
Motivic weight: |
16 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ55(54,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 55, ( :8), 1)
|
Particular Values
L(217) |
≈ |
3.604269909 |
L(21) |
≈ |
3.604269909 |
L(9) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 5 | 1−p8T |
| 11 | 1−p8T |
good | 2 | 1+17T+p16T2 |
| 3 | (1−p8T)(1+p8T) |
| 7 | 1−9886078T+p16T2 |
| 13 | 1−678010558T+p16T2 |
| 17 | 1−13921943038T+p16T2 |
| 19 | (1−p8T)(1+p8T) |
| 23 | (1−p8T)(1+p8T) |
| 29 | (1−p8T)(1+p8T) |
| 31 | 1+1206552215038T+p16T2 |
| 37 | (1−p8T)(1+p8T) |
| 41 | (1−p8T)(1+p8T) |
| 43 | 1+7613774646722T+p16T2 |
| 47 | (1−p8T)(1+p8T) |
| 53 | (1−p8T)(1+p8T) |
| 59 | 1+140214236988478T+p16T2 |
| 61 | (1−p8T)(1+p8T) |
| 67 | (1−p8T)(1+p8T) |
| 71 | 1+77726196639358T+p16T2 |
| 73 | 1+1564720076407682T+p16T2 |
| 79 | (1−p8T)(1+p8T) |
| 83 | 1+3613022253130562T+p16T2 |
| 89 | 1−7841390882244482T+p16T2 |
| 97 | (1−p8T)(1+p8T) |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.07937498799510422097805548968, −10.65882628918100187257894316811, −9.647501157488506052792719638095, −8.642864920731345997177030570406, −7.51254922227420762832984551575, −5.78057515393475360659004218140, −4.83717085441055109790416199158, −3.71290232737277187300001029010, −1.46745121703469827642332011530, −1.25877530102447357949494549842,
1.25877530102447357949494549842, 1.46745121703469827642332011530, 3.71290232737277187300001029010, 4.83717085441055109790416199158, 5.78057515393475360659004218140, 7.51254922227420762832984551575, 8.642864920731345997177030570406, 9.647501157488506052792719638095, 10.65882628918100187257894316811, 12.07937498799510422097805548968