Properties

Label 2-55-11.3-c5-0-5
Degree $2$
Conductor $55$
Sign $-0.756 - 0.653i$
Analytic cond. $8.82111$
Root an. cond. $2.97003$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.854 − 0.620i)2-s + (7.01 + 21.5i)3-s + (−9.54 + 29.3i)4-s + (20.2 + 14.6i)5-s + (19.3 + 14.0i)6-s + (3.78 − 11.6i)7-s + (20.5 + 63.1i)8-s + (−219. + 159. i)9-s + 26.3·10-s + (−309. − 255. i)11-s − 700.·12-s + (149. − 108. i)13-s + (−3.99 − 12.2i)14-s + (−175. + 539. i)15-s + (−742. − 539. i)16-s + (558. + 405. i)17-s + ⋯
L(s)  = 1  + (0.151 − 0.109i)2-s + (0.449 + 1.38i)3-s + (−0.298 + 0.917i)4-s + (0.361 + 0.262i)5-s + (0.219 + 0.159i)6-s + (0.0291 − 0.0898i)7-s + (0.113 + 0.348i)8-s + (−0.904 + 0.657i)9-s + 0.0834·10-s + (−0.771 − 0.635i)11-s − 1.40·12-s + (0.244 − 0.177i)13-s + (−0.00544 − 0.0167i)14-s + (−0.201 + 0.618i)15-s + (−0.725 − 0.527i)16-s + (0.468 + 0.340i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.756 - 0.653i)\, \overline{\Lambda}(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & (-0.756 - 0.653i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $-0.756 - 0.653i$
Analytic conductor: \(8.82111\)
Root analytic conductor: \(2.97003\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: $\chi_{55} (36, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :5/2),\ -0.756 - 0.653i)\)

Particular Values

\(L(3)\) \(\approx\) \(0.647635 + 1.73943i\)
\(L(\frac12)\) \(\approx\) \(0.647635 + 1.73943i\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 + (-20.2 - 14.6i)T \)
11 \( 1 + (309. + 255. i)T \)
good2 \( 1 + (-0.854 + 0.620i)T + (9.88 - 30.4i)T^{2} \)
3 \( 1 + (-7.01 - 21.5i)T + (-196. + 142. i)T^{2} \)
7 \( 1 + (-3.78 + 11.6i)T + (-1.35e4 - 9.87e3i)T^{2} \)
13 \( 1 + (-149. + 108. i)T + (1.14e5 - 3.53e5i)T^{2} \)
17 \( 1 + (-558. - 405. i)T + (4.38e5 + 1.35e6i)T^{2} \)
19 \( 1 + (-603. - 1.85e3i)T + (-2.00e6 + 1.45e6i)T^{2} \)
23 \( 1 - 23.9T + 6.43e6T^{2} \)
29 \( 1 + (1.40e3 - 4.32e3i)T + (-1.65e7 - 1.20e7i)T^{2} \)
31 \( 1 + (-3.16e3 + 2.29e3i)T + (8.84e6 - 2.72e7i)T^{2} \)
37 \( 1 + (-2.44e3 + 7.53e3i)T + (-5.61e7 - 4.07e7i)T^{2} \)
41 \( 1 + (94.1 + 289. i)T + (-9.37e7 + 6.80e7i)T^{2} \)
43 \( 1 - 7.17e3T + 1.47e8T^{2} \)
47 \( 1 + (-1.80e3 - 5.55e3i)T + (-1.85e8 + 1.34e8i)T^{2} \)
53 \( 1 + (1.10e4 - 8.06e3i)T + (1.29e8 - 3.97e8i)T^{2} \)
59 \( 1 + (-1.19e4 + 3.68e4i)T + (-5.78e8 - 4.20e8i)T^{2} \)
61 \( 1 + (-4.49e4 - 3.26e4i)T + (2.60e8 + 8.03e8i)T^{2} \)
67 \( 1 + 5.55e4T + 1.35e9T^{2} \)
71 \( 1 + (1.87e4 + 1.36e4i)T + (5.57e8 + 1.71e9i)T^{2} \)
73 \( 1 + (2.03e4 - 6.25e4i)T + (-1.67e9 - 1.21e9i)T^{2} \)
79 \( 1 + (-3.43e4 + 2.49e4i)T + (9.50e8 - 2.92e9i)T^{2} \)
83 \( 1 + (-6.96e4 - 5.05e4i)T + (1.21e9 + 3.74e9i)T^{2} \)
89 \( 1 - 5.94e4T + 5.58e9T^{2} \)
97 \( 1 + (5.13e4 - 3.72e4i)T + (2.65e9 - 8.16e9i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.66819259581972309539100301621, −13.78492364129133937904911146446, −12.57248299450634347723063722271, −11.03462246244767186499709858119, −10.06059194017216300218555936220, −8.877209337414315887157832908273, −7.79008187125693537855208439316, −5.51629212447645244508592090808, −4.00328351653418031937326107313, −2.97531580139448935306047949191, 0.869710536644759031865064369904, 2.30059054635455869282513817810, 4.99447242184227944574897949371, 6.38644509240278019881647058742, 7.57412734895910640459637186007, 8.977186771539180638360655639996, 10.20359217617497218795089875385, 11.84447110313067612684830141091, 13.20125214411974560852791571936, 13.56756304401445378767223311030

Graph of the $Z$-function along the critical line