Properties

Label 2-55-1.1-c5-0-16
Degree $2$
Conductor $55$
Sign $-1$
Analytic cond. $8.82111$
Root an. cond. $2.97003$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.40·2-s − 15.0·3-s + 9.01·4-s + 25·5-s − 96.4·6-s − 122.·7-s − 147.·8-s − 16.0·9-s + 160.·10-s + 121·11-s − 135.·12-s − 1.04e3·13-s − 783.·14-s − 376.·15-s − 1.23e3·16-s + 400.·17-s − 102.·18-s + 581.·19-s + 225.·20-s + 1.84e3·21-s + 774.·22-s + 66.9·23-s + 2.21e3·24-s + 625·25-s − 6.67e3·26-s + 3.90e3·27-s − 1.10e3·28-s + ⋯
L(s)  = 1  + 1.13·2-s − 0.966·3-s + 0.281·4-s + 0.447·5-s − 1.09·6-s − 0.944·7-s − 0.813·8-s − 0.0660·9-s + 0.506·10-s + 0.301·11-s − 0.272·12-s − 1.71·13-s − 1.06·14-s − 0.432·15-s − 1.20·16-s + 0.336·17-s − 0.0747·18-s + 0.369·19-s + 0.126·20-s + 0.912·21-s + 0.341·22-s + 0.0263·23-s + 0.785·24-s + 0.200·25-s − 1.93·26-s + 1.03·27-s − 0.266·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $-1$
Analytic conductor: \(8.82111\)
Root analytic conductor: \(2.97003\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 55,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 - 121T \)
good2 \( 1 - 6.40T + 32T^{2} \)
3 \( 1 + 15.0T + 243T^{2} \)
7 \( 1 + 122.T + 1.68e4T^{2} \)
13 \( 1 + 1.04e3T + 3.71e5T^{2} \)
17 \( 1 - 400.T + 1.41e6T^{2} \)
19 \( 1 - 581.T + 2.47e6T^{2} \)
23 \( 1 - 66.9T + 6.43e6T^{2} \)
29 \( 1 - 6.78e3T + 2.05e7T^{2} \)
31 \( 1 + 3.86e3T + 2.86e7T^{2} \)
37 \( 1 + 1.45e4T + 6.93e7T^{2} \)
41 \( 1 + 5.66e3T + 1.15e8T^{2} \)
43 \( 1 - 1.85e3T + 1.47e8T^{2} \)
47 \( 1 - 2.73e4T + 2.29e8T^{2} \)
53 \( 1 + 1.68e4T + 4.18e8T^{2} \)
59 \( 1 + 1.98e4T + 7.14e8T^{2} \)
61 \( 1 + 2.46e4T + 8.44e8T^{2} \)
67 \( 1 + 3.99e4T + 1.35e9T^{2} \)
71 \( 1 - 2.49e4T + 1.80e9T^{2} \)
73 \( 1 + 8.17e4T + 2.07e9T^{2} \)
79 \( 1 + 1.68e4T + 3.07e9T^{2} \)
83 \( 1 - 2.00e4T + 3.93e9T^{2} \)
89 \( 1 - 1.05e5T + 5.58e9T^{2} \)
97 \( 1 + 1.38e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.72617401191530719454330205047, −12.37735047622502092734216901767, −12.05981789016524671527788381631, −10.36603159186804327308352374331, −9.198515378405727399374327801566, −6.87501437414190963423096779922, −5.79233580028495839362506662210, −4.81385584202623914801612656302, −2.98723004237040680542163932172, 0, 2.98723004237040680542163932172, 4.81385584202623914801612656302, 5.79233580028495839362506662210, 6.87501437414190963423096779922, 9.198515378405727399374327801566, 10.36603159186804327308352374331, 12.05981789016524671527788381631, 12.37735047622502092734216901767, 13.72617401191530719454330205047

Graph of the $Z$-function along the critical line