Properties

Label 2-55-1.1-c5-0-13
Degree $2$
Conductor $55$
Sign $1$
Analytic cond. $8.82111$
Root an. cond. $2.97003$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8.57·2-s + 16.0·3-s + 41.4·4-s + 25·5-s + 137.·6-s + 3.71·7-s + 81.1·8-s + 14.4·9-s + 214.·10-s − 121·11-s + 665.·12-s + 94.0·13-s + 31.8·14-s + 401.·15-s − 631.·16-s + 196.·17-s + 124.·18-s − 425.·19-s + 1.03e3·20-s + 59.6·21-s − 1.03e3·22-s + 518.·23-s + 1.30e3·24-s + 625·25-s + 805.·26-s − 3.66e3·27-s + 154.·28-s + ⋯
L(s)  = 1  + 1.51·2-s + 1.02·3-s + 1.29·4-s + 0.447·5-s + 1.55·6-s + 0.0286·7-s + 0.448·8-s + 0.0596·9-s + 0.677·10-s − 0.301·11-s + 1.33·12-s + 0.154·13-s + 0.0434·14-s + 0.460·15-s − 0.616·16-s + 0.165·17-s + 0.0903·18-s − 0.270·19-s + 0.579·20-s + 0.0294·21-s − 0.456·22-s + 0.204·23-s + 0.461·24-s + 0.200·25-s + 0.233·26-s − 0.968·27-s + 0.0371·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 55 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(55\)    =    \(5 \cdot 11\)
Sign: $1$
Analytic conductor: \(8.82111\)
Root analytic conductor: \(2.97003\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 55,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(4.844282077\)
\(L(\frac12)\) \(\approx\) \(4.844282077\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad5 \( 1 - 25T \)
11 \( 1 + 121T \)
good2 \( 1 - 8.57T + 32T^{2} \)
3 \( 1 - 16.0T + 243T^{2} \)
7 \( 1 - 3.71T + 1.68e4T^{2} \)
13 \( 1 - 94.0T + 3.71e5T^{2} \)
17 \( 1 - 196.T + 1.41e6T^{2} \)
19 \( 1 + 425.T + 2.47e6T^{2} \)
23 \( 1 - 518.T + 6.43e6T^{2} \)
29 \( 1 + 378.T + 2.05e7T^{2} \)
31 \( 1 - 5.09e3T + 2.86e7T^{2} \)
37 \( 1 + 4.41e3T + 6.93e7T^{2} \)
41 \( 1 - 1.22e4T + 1.15e8T^{2} \)
43 \( 1 + 1.20e4T + 1.47e8T^{2} \)
47 \( 1 - 1.45e3T + 2.29e8T^{2} \)
53 \( 1 + 2.47e4T + 4.18e8T^{2} \)
59 \( 1 + 2.23e4T + 7.14e8T^{2} \)
61 \( 1 - 5.29e4T + 8.44e8T^{2} \)
67 \( 1 - 6.50e4T + 1.35e9T^{2} \)
71 \( 1 - 6.07e4T + 1.80e9T^{2} \)
73 \( 1 - 5.48e4T + 2.07e9T^{2} \)
79 \( 1 - 4.02e4T + 3.07e9T^{2} \)
83 \( 1 - 7.41e4T + 3.93e9T^{2} \)
89 \( 1 - 551.T + 5.58e9T^{2} \)
97 \( 1 - 8.29e4T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.16274416991818887723589027144, −13.45113922903597237652156448746, −12.51190890843967129273307445417, −11.15033518551979842767683092876, −9.514230490183577453994395600947, −8.169560904971295204726155912779, −6.47617545963532347570851984486, −5.10955704809164212867502394472, −3.55952998132502126454546309691, −2.36224490516250573872248365349, 2.36224490516250573872248365349, 3.55952998132502126454546309691, 5.10955704809164212867502394472, 6.47617545963532347570851984486, 8.169560904971295204726155912779, 9.514230490183577453994395600947, 11.15033518551979842767683092876, 12.51190890843967129273307445417, 13.45113922903597237652156448746, 14.16274416991818887723589027144

Graph of the $Z$-function along the critical line