Properties

Label 2-5488-1.1-c1-0-135
Degree $2$
Conductor $5488$
Sign $-1$
Analytic cond. $43.8219$
Root an. cond. $6.61981$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.71·3-s + 0.193·5-s − 0.0502·9-s + 4.62·11-s − 1.46·13-s + 0.332·15-s − 3.70·17-s − 4.29·19-s + 2.42·23-s − 4.96·25-s − 5.23·27-s − 5.58·29-s − 8.73·31-s + 7.93·33-s + 1.47·37-s − 2.51·39-s − 5.02·41-s − 10.3·43-s − 0.00971·45-s − 2.92·47-s − 6.35·51-s − 1.84·53-s + 0.894·55-s − 7.38·57-s − 1.25·59-s + 3.25·61-s − 0.283·65-s + ⋯
L(s)  = 1  + 0.991·3-s + 0.0864·5-s − 0.0167·9-s + 1.39·11-s − 0.405·13-s + 0.0857·15-s − 0.897·17-s − 0.986·19-s + 0.505·23-s − 0.992·25-s − 1.00·27-s − 1.03·29-s − 1.56·31-s + 1.38·33-s + 0.241·37-s − 0.402·39-s − 0.784·41-s − 1.57·43-s − 0.00144·45-s − 0.426·47-s − 0.889·51-s − 0.253·53-s + 0.120·55-s − 0.977·57-s − 0.163·59-s + 0.416·61-s − 0.0351·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5488\)    =    \(2^{4} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(43.8219\)
Root analytic conductor: \(6.61981\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 1.71T + 3T^{2} \)
5 \( 1 - 0.193T + 5T^{2} \)
11 \( 1 - 4.62T + 11T^{2} \)
13 \( 1 + 1.46T + 13T^{2} \)
17 \( 1 + 3.70T + 17T^{2} \)
19 \( 1 + 4.29T + 19T^{2} \)
23 \( 1 - 2.42T + 23T^{2} \)
29 \( 1 + 5.58T + 29T^{2} \)
31 \( 1 + 8.73T + 31T^{2} \)
37 \( 1 - 1.47T + 37T^{2} \)
41 \( 1 + 5.02T + 41T^{2} \)
43 \( 1 + 10.3T + 43T^{2} \)
47 \( 1 + 2.92T + 47T^{2} \)
53 \( 1 + 1.84T + 53T^{2} \)
59 \( 1 + 1.25T + 59T^{2} \)
61 \( 1 - 3.25T + 61T^{2} \)
67 \( 1 - 10.9T + 67T^{2} \)
71 \( 1 + 4.57T + 71T^{2} \)
73 \( 1 + 1.74T + 73T^{2} \)
79 \( 1 + 2.06T + 79T^{2} \)
83 \( 1 - 9.68T + 83T^{2} \)
89 \( 1 - 16.8T + 89T^{2} \)
97 \( 1 - 13.4T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.945979894539439655229873243672, −7.08392082608214294854031550049, −6.52892602494584581412607972211, −5.69975023860737509487519709845, −4.74870239302011796063802894301, −3.83466475181870429282167359463, −3.42371642780509298367568835988, −2.20668314085145612223295440593, −1.74033255835820376543343780802, 0, 1.74033255835820376543343780802, 2.20668314085145612223295440593, 3.42371642780509298367568835988, 3.83466475181870429282167359463, 4.74870239302011796063802894301, 5.69975023860737509487519709845, 6.52892602494584581412607972211, 7.08392082608214294854031550049, 7.945979894539439655229873243672

Graph of the $Z$-function along the critical line