Properties

Label 2-5488-1.1-c1-0-132
Degree $2$
Conductor $5488$
Sign $-1$
Analytic cond. $43.8219$
Root an. cond. $6.61981$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.30·3-s + 0.966·5-s − 1.29·9-s + 3.78·11-s − 2.23·13-s + 1.26·15-s + 2.45·17-s − 8.23·19-s − 4.87·23-s − 4.06·25-s − 5.60·27-s + 2.43·29-s − 1.65·31-s + 4.94·33-s − 3.64·37-s − 2.91·39-s − 0.608·41-s − 3.24·43-s − 1.24·45-s − 9.46·47-s + 3.20·51-s − 1.76·53-s + 3.66·55-s − 10.7·57-s + 0.605·59-s + 8.41·61-s − 2.15·65-s + ⋯
L(s)  = 1  + 0.754·3-s + 0.432·5-s − 0.430·9-s + 1.14·11-s − 0.619·13-s + 0.326·15-s + 0.594·17-s − 1.89·19-s − 1.01·23-s − 0.813·25-s − 1.07·27-s + 0.452·29-s − 0.296·31-s + 0.861·33-s − 0.599·37-s − 0.467·39-s − 0.0950·41-s − 0.495·43-s − 0.186·45-s − 1.38·47-s + 0.448·51-s − 0.242·53-s + 0.493·55-s − 1.42·57-s + 0.0787·59-s + 1.07·61-s − 0.267·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5488\)    =    \(2^{4} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(43.8219\)
Root analytic conductor: \(6.61981\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 - 1.30T + 3T^{2} \)
5 \( 1 - 0.966T + 5T^{2} \)
11 \( 1 - 3.78T + 11T^{2} \)
13 \( 1 + 2.23T + 13T^{2} \)
17 \( 1 - 2.45T + 17T^{2} \)
19 \( 1 + 8.23T + 19T^{2} \)
23 \( 1 + 4.87T + 23T^{2} \)
29 \( 1 - 2.43T + 29T^{2} \)
31 \( 1 + 1.65T + 31T^{2} \)
37 \( 1 + 3.64T + 37T^{2} \)
41 \( 1 + 0.608T + 41T^{2} \)
43 \( 1 + 3.24T + 43T^{2} \)
47 \( 1 + 9.46T + 47T^{2} \)
53 \( 1 + 1.76T + 53T^{2} \)
59 \( 1 - 0.605T + 59T^{2} \)
61 \( 1 - 8.41T + 61T^{2} \)
67 \( 1 + 9.34T + 67T^{2} \)
71 \( 1 - 5.91T + 71T^{2} \)
73 \( 1 + 10.5T + 73T^{2} \)
79 \( 1 + 11.0T + 79T^{2} \)
83 \( 1 + 12.9T + 83T^{2} \)
89 \( 1 - 15.9T + 89T^{2} \)
97 \( 1 + 9.28T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.958290478991987881811775109270, −7.12889488925622187816493116628, −6.27742026967340984265161641145, −5.85461581149625415850680327808, −4.76866120702434108663437985407, −3.97335696079061665377357288266, −3.27855274137526227207923349193, −2.24939349358846530095648096134, −1.68883297549358668712299571920, 0, 1.68883297549358668712299571920, 2.24939349358846530095648096134, 3.27855274137526227207923349193, 3.97335696079061665377357288266, 4.76866120702434108663437985407, 5.85461581149625415850680327808, 6.27742026967340984265161641145, 7.12889488925622187816493116628, 7.958290478991987881811775109270

Graph of the $Z$-function along the critical line