Properties

Label 2-5488-1.1-c1-0-114
Degree $2$
Conductor $5488$
Sign $-1$
Analytic cond. $43.8219$
Root an. cond. $6.61981$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.15·3-s + 4.03·5-s + 6.93·9-s + 2.72·11-s − 3.56·13-s − 12.7·15-s − 1.69·17-s + 4.34·19-s − 1.78·23-s + 11.2·25-s − 12.4·27-s + 0.407·29-s − 6.58·31-s − 8.57·33-s − 9.98·37-s + 11.2·39-s − 7.86·41-s − 6.09·43-s + 27.9·45-s − 1.71·47-s + 5.33·51-s − 5.92·53-s + 10.9·55-s − 13.7·57-s − 7.68·59-s − 4.52·61-s − 14.3·65-s + ⋯
L(s)  = 1  − 1.81·3-s + 1.80·5-s + 2.31·9-s + 0.820·11-s − 0.990·13-s − 3.28·15-s − 0.410·17-s + 0.997·19-s − 0.371·23-s + 2.25·25-s − 2.38·27-s + 0.0757·29-s − 1.18·31-s − 1.49·33-s − 1.64·37-s + 1.80·39-s − 1.22·41-s − 0.930·43-s + 4.16·45-s − 0.249·47-s + 0.746·51-s − 0.813·53-s + 1.48·55-s − 1.81·57-s − 1.00·59-s − 0.578·61-s − 1.78·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5488\)    =    \(2^{4} \cdot 7^{3}\)
Sign: $-1$
Analytic conductor: \(43.8219\)
Root analytic conductor: \(6.61981\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5488,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 \)
good3 \( 1 + 3.15T + 3T^{2} \)
5 \( 1 - 4.03T + 5T^{2} \)
11 \( 1 - 2.72T + 11T^{2} \)
13 \( 1 + 3.56T + 13T^{2} \)
17 \( 1 + 1.69T + 17T^{2} \)
19 \( 1 - 4.34T + 19T^{2} \)
23 \( 1 + 1.78T + 23T^{2} \)
29 \( 1 - 0.407T + 29T^{2} \)
31 \( 1 + 6.58T + 31T^{2} \)
37 \( 1 + 9.98T + 37T^{2} \)
41 \( 1 + 7.86T + 41T^{2} \)
43 \( 1 + 6.09T + 43T^{2} \)
47 \( 1 + 1.71T + 47T^{2} \)
53 \( 1 + 5.92T + 53T^{2} \)
59 \( 1 + 7.68T + 59T^{2} \)
61 \( 1 + 4.52T + 61T^{2} \)
67 \( 1 + 4.16T + 67T^{2} \)
71 \( 1 - 7.93T + 71T^{2} \)
73 \( 1 + 12.1T + 73T^{2} \)
79 \( 1 - 0.285T + 79T^{2} \)
83 \( 1 + 9.36T + 83T^{2} \)
89 \( 1 + 8.94T + 89T^{2} \)
97 \( 1 - 7.00T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.34697071228573366158214847756, −6.83202218198601839622926566060, −6.27957895728139152044223588710, −5.60928824325474844177852316919, −5.14806175125579965596516318177, −4.55773190217699686082284657736, −3.26798431648436724480585152523, −1.87663914197817783895723822927, −1.42471268024790358241123998296, 0, 1.42471268024790358241123998296, 1.87663914197817783895723822927, 3.26798431648436724480585152523, 4.55773190217699686082284657736, 5.14806175125579965596516318177, 5.60928824325474844177852316919, 6.27957895728139152044223588710, 6.83202218198601839622926566060, 7.34697071228573366158214847756

Graph of the $Z$-function along the critical line