L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s − 0.732i·5-s + (0.866 + 0.499i)6-s + (0.866 + 0.5i)7-s + 0.999i·8-s + (−0.499 + 0.866i)9-s + (0.366 + 0.633i)10-s + (1.5 − 0.866i)11-s − 0.999·12-s + (1.59 + 3.23i)13-s − 0.999·14-s + (−0.633 + 0.366i)15-s + (−0.5 − 0.866i)16-s + (1.86 − 3.23i)17-s + ⋯ |
L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.288 − 0.499i)3-s + (0.249 − 0.433i)4-s − 0.327i·5-s + (0.353 + 0.204i)6-s + (0.327 + 0.188i)7-s + 0.353i·8-s + (−0.166 + 0.288i)9-s + (0.115 + 0.200i)10-s + (0.452 − 0.261i)11-s − 0.288·12-s + (0.443 + 0.896i)13-s − 0.267·14-s + (−0.163 + 0.0945i)15-s + (−0.125 − 0.216i)16-s + (0.452 − 0.783i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.824 + 0.565i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.990612 - 0.306880i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.990612 - 0.306880i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (-1.59 - 3.23i)T \) |
good | 5 | \( 1 + 0.732iT - 5T^{2} \) |
| 11 | \( 1 + (-1.5 + 0.866i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.86 + 3.23i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.866 - 0.5i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (1.73 + 3i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.23 + 5.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.19iT - 31T^{2} \) |
| 37 | \( 1 + (-5.83 + 3.36i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-2.59 + 1.5i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-1.63 + 2.83i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 2.46iT - 47T^{2} \) |
| 53 | \( 1 - 7T + 53T^{2} \) |
| 59 | \( 1 + (-0.803 - 0.464i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (2.59 - 4.5i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-7.73 + 4.46i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (1.90 + 1.09i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 5.46iT - 73T^{2} \) |
| 79 | \( 1 - 2.07T + 79T^{2} \) |
| 83 | \( 1 + 0.196iT - 83T^{2} \) |
| 89 | \( 1 + (9.06 - 5.23i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-13.5 - 7.83i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.79085251521530519987053866857, −9.607515564867724926863919977306, −8.910811064175830418972629874358, −8.049184739844742437751944333469, −7.15873600195455352732704127888, −6.25984439166830131523684117458, −5.38567503252472026963338892338, −4.14794305922382447816013905362, −2.32096330944653758915800400891, −0.926301273700834640319346484287,
1.29360346199130214710424497254, 3.02685845403989968944866945151, 4.00716912079894669915291008645, 5.30416635511018551316427233145, 6.37243157379974201728589590801, 7.45635512146812402965429340057, 8.328420958027490393525284725526, 9.265719529422004260797475720291, 10.14101182143248310448590899383, 10.79138033454868803260646687652