| L(s) = 1 | + (−0.866 + 0.5i)2-s + (−0.5 − 0.866i)3-s + (0.499 − 0.866i)4-s + 2.73i·5-s + (0.866 + 0.499i)6-s + (−0.866 − 0.5i)7-s + 0.999i·8-s + (−0.499 + 0.866i)9-s + (−1.36 − 2.36i)10-s + (4.5 − 2.59i)11-s − 0.999·12-s + (−0.866 + 3.5i)13-s + 0.999·14-s + (2.36 − 1.36i)15-s + (−0.5 − 0.866i)16-s + (−2.86 + 4.96i)17-s + ⋯ |
| L(s) = 1 | + (−0.612 + 0.353i)2-s + (−0.288 − 0.499i)3-s + (0.249 − 0.433i)4-s + 1.22i·5-s + (0.353 + 0.204i)6-s + (−0.327 − 0.188i)7-s + 0.353i·8-s + (−0.166 + 0.288i)9-s + (−0.431 − 0.748i)10-s + (1.35 − 0.783i)11-s − 0.288·12-s + (−0.240 + 0.970i)13-s + 0.267·14-s + (0.610 − 0.352i)15-s + (−0.125 − 0.216i)16-s + (−0.695 + 1.20i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 546 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.265 - 0.964i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.452761 + 0.593982i\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.452761 + 0.593982i\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 + (0.866 - 0.5i)T \) |
| 3 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (0.866 - 3.5i)T \) |
| good | 5 | \( 1 - 2.73iT - 5T^{2} \) |
| 11 | \( 1 + (-4.5 + 2.59i)T + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (2.86 - 4.96i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (5.59 + 3.23i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (0.267 + 0.464i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-5.23 - 9.06i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 6.73iT - 31T^{2} \) |
| 37 | \( 1 + (2.83 - 1.63i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-1.33 + 0.767i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (2.63 - 4.56i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 9.92iT - 47T^{2} \) |
| 53 | \( 1 - 3.92T + 53T^{2} \) |
| 59 | \( 1 + (-4.26 - 2.46i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.133 - 0.232i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (8.66 - 5i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (9.29 + 5.36i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 5.46iT - 73T^{2} \) |
| 79 | \( 1 - 9T + 79T^{2} \) |
| 83 | \( 1 + 12.7iT - 83T^{2} \) |
| 89 | \( 1 + (9.40 - 5.42i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-3.29 - 1.90i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.83551012177052173210948570960, −10.45586276183464764239771865515, −9.036304681467112522465570928457, −8.564095833256093044872084689538, −7.10273666132993184357042529551, −6.59729671185748879788068475144, −6.21264242957605226308921733799, −4.42392860858712601916531713415, −3.06389081997465632949987871796, −1.60261328394993151849986562835,
0.55780402277734569359906106642, 2.22309253777135583377504159053, 3.92301951337008298282573745801, 4.68965757326708442835757912045, 5.90577736808479048162270825976, 6.96424564403085186636217068398, 8.232217419737605284150690538308, 8.936466076214601355523869414706, 9.674877994452105573837401069904, 10.26127448710590795608230693503