L(s) = 1 | + 2-s − 4-s − 5-s − 3·8-s − 10-s − 2·13-s − 16-s + 6·17-s + 4·19-s + 20-s − 4·23-s + 25-s − 2·26-s + 6·29-s − 8·31-s + 5·32-s + 6·34-s − 2·37-s + 4·38-s + 3·40-s + 2·41-s − 4·43-s − 4·46-s + 12·47-s − 7·49-s + 50-s + 2·52-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1/2·4-s − 0.447·5-s − 1.06·8-s − 0.316·10-s − 0.554·13-s − 1/4·16-s + 1.45·17-s + 0.917·19-s + 0.223·20-s − 0.834·23-s + 1/5·25-s − 0.392·26-s + 1.11·29-s − 1.43·31-s + 0.883·32-s + 1.02·34-s − 0.328·37-s + 0.648·38-s + 0.474·40-s + 0.312·41-s − 0.609·43-s − 0.589·46-s + 1.75·47-s − 49-s + 0.141·50-s + 0.277·52-s + ⋯ |
Λ(s)=(=(5445s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5445s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+T |
| 11 | 1 |
good | 2 | 1−T+pT2 |
| 7 | 1+pT2 |
| 13 | 1+2T+pT2 |
| 17 | 1−6T+pT2 |
| 19 | 1−4T+pT2 |
| 23 | 1+4T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1+8T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1−2T+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1−2T+pT2 |
| 59 | 1+4T+pT2 |
| 61 | 1−10T+pT2 |
| 67 | 1+16T+pT2 |
| 71 | 1+8T+pT2 |
| 73 | 1+14T+pT2 |
| 79 | 1+8T+pT2 |
| 83 | 1+4T+pT2 |
| 89 | 1+10T+pT2 |
| 97 | 1−10T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.65244290168268394743634881542, −7.25611852136541238398716522907, −6.08693701335829428157980562583, −5.54640979880007283696239996782, −4.87806253960044967314702320131, −4.10497602187160877381582357369, −3.40349928139289108990558562724, −2.73199597836315214499399961863, −1.27797148118613320465803316120, 0,
1.27797148118613320465803316120, 2.73199597836315214499399961863, 3.40349928139289108990558562724, 4.10497602187160877381582357369, 4.87806253960044967314702320131, 5.54640979880007283696239996782, 6.08693701335829428157980562583, 7.25611852136541238398716522907, 7.65244290168268394743634881542