L(s) = 1 | + (−1.52 − 2.28i)3-s + (0.326 + 0.0649i)5-s + (3.74 − 0.745i)7-s + (−1.73 + 4.18i)9-s + (3.13 + 2.09i)11-s + (2.87 − 2.87i)13-s + (−0.349 − 0.843i)15-s + (4.11 + 0.311i)17-s + (−0.183 − 0.442i)19-s + (−7.41 − 7.41i)21-s + (−1.77 − 1.18i)23-s + (−4.51 − 1.87i)25-s + (4.12 − 0.821i)27-s + (−0.575 + 2.89i)29-s + (−4.13 − 6.18i)31-s + ⋯ |
L(s) = 1 | + (−0.880 − 1.31i)3-s + (0.145 + 0.0290i)5-s + (1.41 − 0.281i)7-s + (−0.578 + 1.39i)9-s + (0.943 + 0.630i)11-s + (0.797 − 0.797i)13-s + (−0.0902 − 0.217i)15-s + (0.997 + 0.0754i)17-s + (−0.0420 − 0.101i)19-s + (−1.61 − 1.61i)21-s + (−0.370 − 0.247i)23-s + (−0.903 − 0.374i)25-s + (0.794 − 0.158i)27-s + (−0.106 + 0.536i)29-s + (−0.741 − 1.11i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0820 + 0.996i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.0820 + 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.00167 - 0.922622i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.00167 - 0.922622i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (-4.11 - 0.311i)T \) |
good | 3 | \( 1 + (1.52 + 2.28i)T + (-1.14 + 2.77i)T^{2} \) |
| 5 | \( 1 + (-0.326 - 0.0649i)T + (4.61 + 1.91i)T^{2} \) |
| 7 | \( 1 + (-3.74 + 0.745i)T + (6.46 - 2.67i)T^{2} \) |
| 11 | \( 1 + (-3.13 - 2.09i)T + (4.20 + 10.1i)T^{2} \) |
| 13 | \( 1 + (-2.87 + 2.87i)T - 13iT^{2} \) |
| 19 | \( 1 + (0.183 + 0.442i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (1.77 + 1.18i)T + (8.80 + 21.2i)T^{2} \) |
| 29 | \( 1 + (0.575 - 2.89i)T + (-26.7 - 11.0i)T^{2} \) |
| 31 | \( 1 + (4.13 + 6.18i)T + (-11.8 + 28.6i)T^{2} \) |
| 37 | \( 1 + (3.97 - 2.65i)T + (14.1 - 34.1i)T^{2} \) |
| 41 | \( 1 + (-1.10 - 5.57i)T + (-37.8 + 15.6i)T^{2} \) |
| 43 | \( 1 + (0.938 - 2.26i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + (-9.23 + 9.23i)T - 47iT^{2} \) |
| 53 | \( 1 + (-7.71 + 3.19i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (2.37 + 0.983i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (2.45 + 12.3i)T + (-56.3 + 23.3i)T^{2} \) |
| 67 | \( 1 - 13.0iT - 67T^{2} \) |
| 71 | \( 1 + (1.11 - 0.743i)T + (27.1 - 65.5i)T^{2} \) |
| 73 | \( 1 + (-0.580 + 2.91i)T + (-67.4 - 27.9i)T^{2} \) |
| 79 | \( 1 + (4.26 - 6.37i)T + (-30.2 - 72.9i)T^{2} \) |
| 83 | \( 1 + (3.77 - 1.56i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (9.04 - 9.04i)T - 89iT^{2} \) |
| 97 | \( 1 + (10.4 + 2.07i)T + (89.6 + 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.90502962410751656287668473409, −9.905372961387198491428723891087, −8.462030239226294362957162513649, −7.77286027732724042416894499070, −7.02375381994648688923312786738, −5.99290183999270753506261198666, −5.28127683823659518944424067184, −3.96737559988481929959836044862, −1.94949528499354797821869962476, −1.07469655958675921683214856481,
1.52616429373705869334425501418, 3.67883958865642949063931018233, 4.37340226082515917878544143332, 5.51370669255253995233291836212, 5.94651630787165162488417642511, 7.44277947289200826813712769337, 8.704462229592021014399002470564, 9.232106600768730222320648911994, 10.34224978342947040280179044478, 11.03210262128670268460607678009