L(s) = 1 | + (0.456 + 0.683i)3-s + (1.61 + 0.322i)5-s + (4.21 − 0.837i)7-s + (0.889 − 2.14i)9-s + (0.106 + 0.0712i)11-s + (−2.31 + 2.31i)13-s + (0.518 + 1.25i)15-s + (−2.89 − 2.93i)17-s + (−1.68 − 4.06i)19-s + (2.49 + 2.49i)21-s + (2.14 + 1.43i)23-s + (−2.10 − 0.870i)25-s + (4.29 − 0.853i)27-s + (−0.908 + 4.56i)29-s + (2.02 + 3.02i)31-s + ⋯ |
L(s) = 1 | + (0.263 + 0.394i)3-s + (0.723 + 0.144i)5-s + (1.59 − 0.316i)7-s + (0.296 − 0.715i)9-s + (0.0321 + 0.0214i)11-s + (−0.642 + 0.642i)13-s + (0.134 + 0.323i)15-s + (−0.702 − 0.711i)17-s + (−0.386 − 0.932i)19-s + (0.544 + 0.544i)21-s + (0.447 + 0.299i)23-s + (−0.420 − 0.174i)25-s + (0.825 − 0.164i)27-s + (−0.168 + 0.848i)29-s + (0.363 + 0.543i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.992 - 0.122i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.992 - 0.122i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.02260 + 0.124477i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.02260 + 0.124477i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (2.89 + 2.93i)T \) |
good | 3 | \( 1 + (-0.456 - 0.683i)T + (-1.14 + 2.77i)T^{2} \) |
| 5 | \( 1 + (-1.61 - 0.322i)T + (4.61 + 1.91i)T^{2} \) |
| 7 | \( 1 + (-4.21 + 0.837i)T + (6.46 - 2.67i)T^{2} \) |
| 11 | \( 1 + (-0.106 - 0.0712i)T + (4.20 + 10.1i)T^{2} \) |
| 13 | \( 1 + (2.31 - 2.31i)T - 13iT^{2} \) |
| 19 | \( 1 + (1.68 + 4.06i)T + (-13.4 + 13.4i)T^{2} \) |
| 23 | \( 1 + (-2.14 - 1.43i)T + (8.80 + 21.2i)T^{2} \) |
| 29 | \( 1 + (0.908 - 4.56i)T + (-26.7 - 11.0i)T^{2} \) |
| 31 | \( 1 + (-2.02 - 3.02i)T + (-11.8 + 28.6i)T^{2} \) |
| 37 | \( 1 + (-7.00 + 4.68i)T + (14.1 - 34.1i)T^{2} \) |
| 41 | \( 1 + (-2.02 - 10.1i)T + (-37.8 + 15.6i)T^{2} \) |
| 43 | \( 1 + (3.26 - 7.87i)T + (-30.4 - 30.4i)T^{2} \) |
| 47 | \( 1 + (4.90 - 4.90i)T - 47iT^{2} \) |
| 53 | \( 1 + (1.32 - 0.549i)T + (37.4 - 37.4i)T^{2} \) |
| 59 | \( 1 + (12.6 + 5.25i)T + (41.7 + 41.7i)T^{2} \) |
| 61 | \( 1 + (0.813 + 4.09i)T + (-56.3 + 23.3i)T^{2} \) |
| 67 | \( 1 + 3.72iT - 67T^{2} \) |
| 71 | \( 1 + (0.759 - 0.507i)T + (27.1 - 65.5i)T^{2} \) |
| 73 | \( 1 + (0.631 - 3.17i)T + (-67.4 - 27.9i)T^{2} \) |
| 79 | \( 1 + (6.49 - 9.71i)T + (-30.2 - 72.9i)T^{2} \) |
| 83 | \( 1 + (-4.75 + 1.97i)T + (58.6 - 58.6i)T^{2} \) |
| 89 | \( 1 + (0.886 - 0.886i)T - 89iT^{2} \) |
| 97 | \( 1 + (8.67 + 1.72i)T + (89.6 + 37.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.01047801332821159334543997334, −9.702254561009653258186534132620, −9.290114612111768113605358336093, −8.236251843008614864896130507613, −7.20425683759261787834996849343, −6.33346857377866035717023362567, −4.85620826962217941744669975484, −4.45841409528854566222256375437, −2.79075639229521362757802058768, −1.50369638096455314117431299187,
1.67557190639961370376101294323, 2.35884279419646686757796459794, 4.30041356487531870233299258710, 5.19901964538140118056197833414, 6.07328982333636994162151056938, 7.46470457258441263578368400722, 8.086989944487229593639557547005, 8.805126903056911264075515116502, 10.05537214761789478506007423461, 10.70332342394672204124322442066