L(s) = 1 | + 1.88·3-s + 2.41·5-s − 2.57i·7-s + 0.564·9-s − 0.736·11-s − 4.07i·13-s + 4.55·15-s + (3.99 − 1.02i)17-s + 0.853i·19-s − 4.85i·21-s + 8.20i·23-s + 0.825·25-s − 4.59·27-s − 5.86·29-s + 3.51i·31-s + ⋯ |
L(s) = 1 | + 1.09·3-s + 1.07·5-s − 0.971i·7-s + 0.188·9-s − 0.221·11-s − 1.13i·13-s + 1.17·15-s + (0.968 − 0.249i)17-s + 0.195i·19-s − 1.05i·21-s + 1.71i·23-s + 0.165·25-s − 0.884·27-s − 1.08·29-s + 0.630i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 + 0.418i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.908 + 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.27811 - 0.499974i\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.27811 - 0.499974i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 17 | \( 1 + (-3.99 + 1.02i)T \) |
good | 3 | \( 1 - 1.88T + 3T^{2} \) |
| 5 | \( 1 - 2.41T + 5T^{2} \) |
| 7 | \( 1 + 2.57iT - 7T^{2} \) |
| 11 | \( 1 + 0.736T + 11T^{2} \) |
| 13 | \( 1 + 4.07iT - 13T^{2} \) |
| 19 | \( 1 - 0.853iT - 19T^{2} \) |
| 23 | \( 1 - 8.20iT - 23T^{2} \) |
| 29 | \( 1 + 5.86T + 29T^{2} \) |
| 31 | \( 1 - 3.51iT - 31T^{2} \) |
| 37 | \( 1 - 4.38T + 37T^{2} \) |
| 41 | \( 1 - 11.7iT - 41T^{2} \) |
| 43 | \( 1 - 1.09iT - 43T^{2} \) |
| 47 | \( 1 - 5.42T + 47T^{2} \) |
| 53 | \( 1 - 4.66iT - 53T^{2} \) |
| 59 | \( 1 + 12.5iT - 59T^{2} \) |
| 61 | \( 1 + 8.16T + 61T^{2} \) |
| 67 | \( 1 - 10.5iT - 67T^{2} \) |
| 71 | \( 1 - 0.511iT - 71T^{2} \) |
| 73 | \( 1 + 13.3iT - 73T^{2} \) |
| 79 | \( 1 + 1.45iT - 79T^{2} \) |
| 83 | \( 1 + 4.35iT - 83T^{2} \) |
| 89 | \( 1 - 5.72T + 89T^{2} \) |
| 97 | \( 1 - 11.8iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.44654348432152348130261169290, −9.772911285064748602352366840105, −9.172160975254084438973572476862, −7.83938751741594569636056147558, −7.58225728531227091146594689091, −6.05171356131925780882500188324, −5.24711920972807677070279965672, −3.68137858030946924966796622807, −2.86442888925216949492305096826, −1.45839693171201570657144845535,
2.01922117259165217700162206635, 2.61216921977835304898133565385, 4.01372817437915929216926512849, 5.46016173819305591901387587636, 6.15378098545041084839498670805, 7.39796220782853952273083951376, 8.490849928435040396211987157421, 9.093300639956331242271943909298, 9.673901690897809974811849250522, 10.68899992892098630320296718728