Properties

Label 2-544-1.1-c1-0-15
Degree $2$
Conductor $544$
Sign $-1$
Analytic cond. $4.34386$
Root an. cond. $2.08419$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.41·3-s − 2·5-s − 4.24·7-s − 0.999·9-s + 1.41·11-s − 4·13-s − 2.82·15-s − 17-s − 2.82·19-s − 6·21-s + 4.24·23-s − 25-s − 5.65·27-s − 6·29-s + 7.07·31-s + 2.00·33-s + 8.48·35-s − 2·37-s − 5.65·39-s − 6·41-s + 8.48·43-s + 1.99·45-s + 11.3·47-s + 10.9·49-s − 1.41·51-s − 6·53-s − 2.82·55-s + ⋯
L(s)  = 1  + 0.816·3-s − 0.894·5-s − 1.60·7-s − 0.333·9-s + 0.426·11-s − 1.10·13-s − 0.730·15-s − 0.242·17-s − 0.648·19-s − 1.30·21-s + 0.884·23-s − 0.200·25-s − 1.08·27-s − 1.11·29-s + 1.27·31-s + 0.348·33-s + 1.43·35-s − 0.328·37-s − 0.905·39-s − 0.937·41-s + 1.29·43-s + 0.298·45-s + 1.65·47-s + 1.57·49-s − 0.198·51-s − 0.824·53-s − 0.381·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(544\)    =    \(2^{5} \cdot 17\)
Sign: $-1$
Analytic conductor: \(4.34386\)
Root analytic conductor: \(2.08419\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 544,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 + T \)
good3 \( 1 - 1.41T + 3T^{2} \)
5 \( 1 + 2T + 5T^{2} \)
7 \( 1 + 4.24T + 7T^{2} \)
11 \( 1 - 1.41T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
19 \( 1 + 2.82T + 19T^{2} \)
23 \( 1 - 4.24T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 7.07T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 - 8.48T + 43T^{2} \)
47 \( 1 - 11.3T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 + 8.48T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 + 5.65T + 67T^{2} \)
71 \( 1 + 7.07T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 + 12.7T + 79T^{2} \)
83 \( 1 + 14.1T + 83T^{2} \)
89 \( 1 + 8T + 89T^{2} \)
97 \( 1 - 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.17477774283515526357850495364, −9.336120915416237385287366511630, −8.741091358321151051827209953162, −7.64453851246508844277874405413, −6.92062370031131789325301552813, −5.85938288392964227279571085200, −4.32821880468655367612998263807, −3.39154834803729830327372220419, −2.55524907939610762396829598334, 0, 2.55524907939610762396829598334, 3.39154834803729830327372220419, 4.32821880468655367612998263807, 5.85938288392964227279571085200, 6.92062370031131789325301552813, 7.64453851246508844277874405413, 8.741091358321151051827209953162, 9.336120915416237385287366511630, 10.17477774283515526357850495364

Graph of the $Z$-function along the critical line