Properties

Label 2-544-1.1-c1-0-11
Degree $2$
Conductor $544$
Sign $-1$
Analytic cond. $4.34386$
Root an. cond. $2.08419$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41·3-s − 2·5-s + 4.24·7-s − 0.999·9-s − 1.41·11-s − 4·13-s + 2.82·15-s − 17-s + 2.82·19-s − 6·21-s − 4.24·23-s − 25-s + 5.65·27-s − 6·29-s − 7.07·31-s + 2.00·33-s − 8.48·35-s − 2·37-s + 5.65·39-s − 6·41-s − 8.48·43-s + 1.99·45-s − 11.3·47-s + 10.9·49-s + 1.41·51-s − 6·53-s + 2.82·55-s + ⋯
L(s)  = 1  − 0.816·3-s − 0.894·5-s + 1.60·7-s − 0.333·9-s − 0.426·11-s − 1.10·13-s + 0.730·15-s − 0.242·17-s + 0.648·19-s − 1.30·21-s − 0.884·23-s − 0.200·25-s + 1.08·27-s − 1.11·29-s − 1.27·31-s + 0.348·33-s − 1.43·35-s − 0.328·37-s + 0.905·39-s − 0.937·41-s − 1.29·43-s + 0.298·45-s − 1.65·47-s + 1.57·49-s + 0.198·51-s − 0.824·53-s + 0.381·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 544 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(544\)    =    \(2^{5} \cdot 17\)
Sign: $-1$
Analytic conductor: \(4.34386\)
Root analytic conductor: \(2.08419\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 544,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
17 \( 1 + T \)
good3 \( 1 + 1.41T + 3T^{2} \)
5 \( 1 + 2T + 5T^{2} \)
7 \( 1 - 4.24T + 7T^{2} \)
11 \( 1 + 1.41T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
19 \( 1 - 2.82T + 19T^{2} \)
23 \( 1 + 4.24T + 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 + 7.07T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 6T + 41T^{2} \)
43 \( 1 + 8.48T + 43T^{2} \)
47 \( 1 + 11.3T + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 - 8.48T + 59T^{2} \)
61 \( 1 - 6T + 61T^{2} \)
67 \( 1 - 5.65T + 67T^{2} \)
71 \( 1 - 7.07T + 71T^{2} \)
73 \( 1 - 10T + 73T^{2} \)
79 \( 1 - 12.7T + 79T^{2} \)
83 \( 1 - 14.1T + 83T^{2} \)
89 \( 1 + 8T + 89T^{2} \)
97 \( 1 - 14T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69173448155844986217917936442, −9.580240288134223750063293857238, −8.222825917361264907354840405073, −7.84941415457428037919492825974, −6.81578944938836420468302730778, −5.29279687573657963962392010010, −5.02823760011202668553500542326, −3.70696280479599982679771944031, −1.98871868663563568784051823381, 0, 1.98871868663563568784051823381, 3.70696280479599982679771944031, 5.02823760011202668553500542326, 5.29279687573657963962392010010, 6.81578944938836420468302730778, 7.84941415457428037919492825974, 8.222825917361264907354840405073, 9.580240288134223750063293857238, 10.69173448155844986217917936442

Graph of the $Z$-function along the critical line