Properties

Label 2-5408-1.1-c1-0-76
Degree $2$
Conductor $5408$
Sign $1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 5-s + 9-s + 4·11-s + 2·15-s + 3·17-s − 2·19-s + 2·23-s − 4·25-s − 4·27-s + 5·29-s + 2·31-s + 8·33-s + 5·37-s + 3·41-s − 4·43-s + 45-s + 6·47-s − 7·49-s + 6·51-s + 13·53-s + 4·55-s − 4·57-s + 12·59-s − 7·61-s − 14·67-s + 4·69-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.447·5-s + 1/3·9-s + 1.20·11-s + 0.516·15-s + 0.727·17-s − 0.458·19-s + 0.417·23-s − 4/5·25-s − 0.769·27-s + 0.928·29-s + 0.359·31-s + 1.39·33-s + 0.821·37-s + 0.468·41-s − 0.609·43-s + 0.149·45-s + 0.875·47-s − 49-s + 0.840·51-s + 1.78·53-s + 0.539·55-s − 0.529·57-s + 1.56·59-s − 0.896·61-s − 1.71·67-s + 0.481·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.677350491\)
\(L(\frac12)\) \(\approx\) \(3.677350491\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \)
5 \( 1 - T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 4 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + 2 T + p T^{2} \)
23 \( 1 - 2 T + p T^{2} \)
29 \( 1 - 5 T + p T^{2} \)
31 \( 1 - 2 T + p T^{2} \)
37 \( 1 - 5 T + p T^{2} \)
41 \( 1 - 3 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - 13 T + p T^{2} \)
59 \( 1 - 12 T + p T^{2} \)
61 \( 1 + 7 T + p T^{2} \)
67 \( 1 + 14 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 2 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.191185078182776739405830467558, −7.66844491577874889402472423892, −6.73258599174818484524749586897, −6.14237126427874163595995351602, −5.30036516143146284562099037082, −4.24308965441678315135450587683, −3.64707230410667219853785623773, −2.78765805022077372013361123276, −2.03552943509357525289762875452, −1.02783059228903960222011057272, 1.02783059228903960222011057272, 2.03552943509357525289762875452, 2.78765805022077372013361123276, 3.64707230410667219853785623773, 4.24308965441678315135450587683, 5.30036516143146284562099037082, 6.14237126427874163595995351602, 6.73258599174818484524749586897, 7.66844491577874889402472423892, 8.191185078182776739405830467558

Graph of the $Z$-function along the critical line