L(s) = 1 | + 2·3-s + 5-s + 9-s + 4·11-s + 2·15-s + 3·17-s − 2·19-s + 2·23-s − 4·25-s − 4·27-s + 5·29-s + 2·31-s + 8·33-s + 5·37-s + 3·41-s − 4·43-s + 45-s + 6·47-s − 7·49-s + 6·51-s + 13·53-s + 4·55-s − 4·57-s + 12·59-s − 7·61-s − 14·67-s + 4·69-s + ⋯ |
L(s) = 1 | + 1.15·3-s + 0.447·5-s + 1/3·9-s + 1.20·11-s + 0.516·15-s + 0.727·17-s − 0.458·19-s + 0.417·23-s − 4/5·25-s − 0.769·27-s + 0.928·29-s + 0.359·31-s + 1.39·33-s + 0.821·37-s + 0.468·41-s − 0.609·43-s + 0.149·45-s + 0.875·47-s − 49-s + 0.840·51-s + 1.78·53-s + 0.539·55-s − 0.529·57-s + 1.56·59-s − 0.896·61-s − 1.71·67-s + 0.481·69-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(3.677350491\) |
\(L(\frac12)\) |
\(\approx\) |
\(3.677350491\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 13 | \( 1 \) |
good | 3 | \( 1 - 2 T + p T^{2} \) |
| 5 | \( 1 - T + p T^{2} \) |
| 7 | \( 1 + p T^{2} \) |
| 11 | \( 1 - 4 T + p T^{2} \) |
| 17 | \( 1 - 3 T + p T^{2} \) |
| 19 | \( 1 + 2 T + p T^{2} \) |
| 23 | \( 1 - 2 T + p T^{2} \) |
| 29 | \( 1 - 5 T + p T^{2} \) |
| 31 | \( 1 - 2 T + p T^{2} \) |
| 37 | \( 1 - 5 T + p T^{2} \) |
| 41 | \( 1 - 3 T + p T^{2} \) |
| 43 | \( 1 + 4 T + p T^{2} \) |
| 47 | \( 1 - 6 T + p T^{2} \) |
| 53 | \( 1 - 13 T + p T^{2} \) |
| 59 | \( 1 - 12 T + p T^{2} \) |
| 61 | \( 1 + 7 T + p T^{2} \) |
| 67 | \( 1 + 14 T + p T^{2} \) |
| 71 | \( 1 - 6 T + p T^{2} \) |
| 73 | \( 1 - 7 T + p T^{2} \) |
| 79 | \( 1 - 8 T + p T^{2} \) |
| 83 | \( 1 - 4 T + p T^{2} \) |
| 89 | \( 1 - 14 T + p T^{2} \) |
| 97 | \( 1 + 2 T + p T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.191185078182776739405830467558, −7.66844491577874889402472423892, −6.73258599174818484524749586897, −6.14237126427874163595995351602, −5.30036516143146284562099037082, −4.24308965441678315135450587683, −3.64707230410667219853785623773, −2.78765805022077372013361123276, −2.03552943509357525289762875452, −1.02783059228903960222011057272,
1.02783059228903960222011057272, 2.03552943509357525289762875452, 2.78765805022077372013361123276, 3.64707230410667219853785623773, 4.24308965441678315135450587683, 5.30036516143146284562099037082, 6.14237126427874163595995351602, 6.73258599174818484524749586897, 7.66844491577874889402472423892, 8.191185078182776739405830467558