Properties

Label 2-5408-1.1-c1-0-72
Degree $2$
Conductor $5408$
Sign $1$
Analytic cond. $43.1830$
Root an. cond. $6.57138$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.41·3-s − 2.82·5-s + 4.41·7-s + 2.82·9-s + 3.24·11-s − 6.82·15-s − 5.82·17-s − 1.24·19-s + 10.6·21-s − 1.24·23-s + 3.00·25-s − 0.414·27-s + 8.65·29-s + 5.65·31-s + 7.82·33-s − 12.4·35-s + 7.48·37-s + 5.82·41-s − 4.07·43-s − 8·45-s + 6·47-s + 12.4·49-s − 14.0·51-s − 2.82·53-s − 9.17·55-s − 3·57-s − 1.24·59-s + ⋯
L(s)  = 1  + 1.39·3-s − 1.26·5-s + 1.66·7-s + 0.942·9-s + 0.977·11-s − 1.76·15-s − 1.41·17-s − 0.285·19-s + 2.32·21-s − 0.259·23-s + 0.600·25-s − 0.0797·27-s + 1.60·29-s + 1.01·31-s + 1.36·33-s − 2.11·35-s + 1.23·37-s + 0.910·41-s − 0.620·43-s − 1.19·45-s + 0.875·47-s + 1.78·49-s − 1.97·51-s − 0.388·53-s − 1.23·55-s − 0.397·57-s − 0.161·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5408 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5408\)    =    \(2^{5} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(43.1830\)
Root analytic conductor: \(6.57138\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5408,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.385087613\)
\(L(\frac12)\) \(\approx\) \(3.385087613\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 \)
good3 \( 1 - 2.41T + 3T^{2} \)
5 \( 1 + 2.82T + 5T^{2} \)
7 \( 1 - 4.41T + 7T^{2} \)
11 \( 1 - 3.24T + 11T^{2} \)
17 \( 1 + 5.82T + 17T^{2} \)
19 \( 1 + 1.24T + 19T^{2} \)
23 \( 1 + 1.24T + 23T^{2} \)
29 \( 1 - 8.65T + 29T^{2} \)
31 \( 1 - 5.65T + 31T^{2} \)
37 \( 1 - 7.48T + 37T^{2} \)
41 \( 1 - 5.82T + 41T^{2} \)
43 \( 1 + 4.07T + 43T^{2} \)
47 \( 1 - 6T + 47T^{2} \)
53 \( 1 + 2.82T + 53T^{2} \)
59 \( 1 + 1.24T + 59T^{2} \)
61 \( 1 - 7T + 61T^{2} \)
67 \( 1 - 13.2T + 67T^{2} \)
71 \( 1 + 7.24T + 71T^{2} \)
73 \( 1 + 12.4T + 73T^{2} \)
79 \( 1 - 6T + 79T^{2} \)
83 \( 1 - 4T + 83T^{2} \)
89 \( 1 - 3.34T + 89T^{2} \)
97 \( 1 - 9T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.163002021581106903165300470532, −7.80260847911718824346767896848, −7.02670816124336143730025666275, −6.21158818162114220661713603136, −4.80414533850404788822905637947, −4.31453885098004132106142828463, −3.87484245944889210098693645298, −2.76205241891822037752605317653, −2.05182273091076588194428043791, −0.968780946651762960778269978958, 0.968780946651762960778269978958, 2.05182273091076588194428043791, 2.76205241891822037752605317653, 3.87484245944889210098693645298, 4.31453885098004132106142828463, 4.80414533850404788822905637947, 6.21158818162114220661713603136, 7.02670816124336143730025666275, 7.80260847911718824346767896848, 8.163002021581106903165300470532

Graph of the $Z$-function along the critical line