L(s) = 1 | + 2.41·3-s − 2.82·5-s + 4.41·7-s + 2.82·9-s + 3.24·11-s − 6.82·15-s − 5.82·17-s − 1.24·19-s + 10.6·21-s − 1.24·23-s + 3.00·25-s − 0.414·27-s + 8.65·29-s + 5.65·31-s + 7.82·33-s − 12.4·35-s + 7.48·37-s + 5.82·41-s − 4.07·43-s − 8·45-s + 6·47-s + 12.4·49-s − 14.0·51-s − 2.82·53-s − 9.17·55-s − 3·57-s − 1.24·59-s + ⋯ |
L(s) = 1 | + 1.39·3-s − 1.26·5-s + 1.66·7-s + 0.942·9-s + 0.977·11-s − 1.76·15-s − 1.41·17-s − 0.285·19-s + 2.32·21-s − 0.259·23-s + 0.600·25-s − 0.0797·27-s + 1.60·29-s + 1.01·31-s + 1.36·33-s − 2.11·35-s + 1.23·37-s + 0.910·41-s − 0.620·43-s − 1.19·45-s + 0.875·47-s + 1.78·49-s − 1.97·51-s − 0.388·53-s − 1.23·55-s − 0.397·57-s − 0.161·59-s + ⋯ |
Λ(s)=(=(5408s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5408s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
3.385087613 |
L(21) |
≈ |
3.385087613 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 13 | 1 |
good | 3 | 1−2.41T+3T2 |
| 5 | 1+2.82T+5T2 |
| 7 | 1−4.41T+7T2 |
| 11 | 1−3.24T+11T2 |
| 17 | 1+5.82T+17T2 |
| 19 | 1+1.24T+19T2 |
| 23 | 1+1.24T+23T2 |
| 29 | 1−8.65T+29T2 |
| 31 | 1−5.65T+31T2 |
| 37 | 1−7.48T+37T2 |
| 41 | 1−5.82T+41T2 |
| 43 | 1+4.07T+43T2 |
| 47 | 1−6T+47T2 |
| 53 | 1+2.82T+53T2 |
| 59 | 1+1.24T+59T2 |
| 61 | 1−7T+61T2 |
| 67 | 1−13.2T+67T2 |
| 71 | 1+7.24T+71T2 |
| 73 | 1+12.4T+73T2 |
| 79 | 1−6T+79T2 |
| 83 | 1−4T+83T2 |
| 89 | 1−3.34T+89T2 |
| 97 | 1−9T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.163002021581106903165300470532, −7.80260847911718824346767896848, −7.02670816124336143730025666275, −6.21158818162114220661713603136, −4.80414533850404788822905637947, −4.31453885098004132106142828463, −3.87484245944889210098693645298, −2.76205241891822037752605317653, −2.05182273091076588194428043791, −0.968780946651762960778269978958,
0.968780946651762960778269978958, 2.05182273091076588194428043791, 2.76205241891822037752605317653, 3.87484245944889210098693645298, 4.31453885098004132106142828463, 4.80414533850404788822905637947, 6.21158818162114220661713603136, 7.02670816124336143730025666275, 7.80260847911718824346767896848, 8.163002021581106903165300470532