Properties

Label 2-5400-5.4-c1-0-61
Degree 22
Conductor 54005400
Sign 0.447+0.894i-0.447 + 0.894i
Analytic cond. 43.119243.1192
Root an. cond. 6.566526.56652
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4i·7-s + 2·11-s − 4i·13-s + i·17-s + 5·19-s − 5i·23-s − 8·29-s + 7·31-s − 6i·37-s + 6·41-s + 2i·43-s + 8i·47-s − 9·49-s − 9i·53-s − 4·59-s + ⋯
L(s)  = 1  − 1.51i·7-s + 0.603·11-s − 1.10i·13-s + 0.242i·17-s + 1.14·19-s − 1.04i·23-s − 1.48·29-s + 1.25·31-s − 0.986i·37-s + 0.937·41-s + 0.304i·43-s + 1.16i·47-s − 1.28·49-s − 1.23i·53-s − 0.520·59-s + ⋯

Functional equation

Λ(s)=(5400s/2ΓC(s)L(s)=((0.447+0.894i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(5400s/2ΓC(s+1/2)L(s)=((0.447+0.894i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 54005400    =    2333522^{3} \cdot 3^{3} \cdot 5^{2}
Sign: 0.447+0.894i-0.447 + 0.894i
Analytic conductor: 43.119243.1192
Root analytic conductor: 6.566526.56652
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ5400(649,)\chi_{5400} (649, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 5400, ( :1/2), 0.447+0.894i)(2,\ 5400,\ (\ :1/2),\ -0.447 + 0.894i)

Particular Values

L(1)L(1) \approx 1.8320298971.832029897
L(12)L(\frac12) \approx 1.8320298971.832029897
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1 1
good7 1+4iT7T2 1 + 4iT - 7T^{2}
11 12T+11T2 1 - 2T + 11T^{2}
13 1+4iT13T2 1 + 4iT - 13T^{2}
17 1iT17T2 1 - iT - 17T^{2}
19 15T+19T2 1 - 5T + 19T^{2}
23 1+5iT23T2 1 + 5iT - 23T^{2}
29 1+8T+29T2 1 + 8T + 29T^{2}
31 17T+31T2 1 - 7T + 31T^{2}
37 1+6iT37T2 1 + 6iT - 37T^{2}
41 16T+41T2 1 - 6T + 41T^{2}
43 12iT43T2 1 - 2iT - 43T^{2}
47 18iT47T2 1 - 8iT - 47T^{2}
53 1+9iT53T2 1 + 9iT - 53T^{2}
59 1+4T+59T2 1 + 4T + 59T^{2}
61 113T+61T2 1 - 13T + 61T^{2}
67 1+10iT67T2 1 + 10iT - 67T^{2}
71 1+6T+71T2 1 + 6T + 71T^{2}
73 16iT73T2 1 - 6iT - 73T^{2}
79 1+9T+79T2 1 + 9T + 79T^{2}
83 117iT83T2 1 - 17iT - 83T^{2}
89 16T+89T2 1 - 6T + 89T^{2}
97 1+8iT97T2 1 + 8iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−7.79593909787110178279249813167, −7.34332201287685559925364283471, −6.59068482433198771955878496084, −5.82533640025509501440969514072, −4.97266406245091826938568769950, −4.11691085566333923827286839761, −3.57829159514621225164626331239, −2.63152661745988196379328072350, −1.28528210237523047739542514516, −0.52823090543578266186422143339, 1.31353487338724060151061674662, 2.19025728196716371850517195257, 3.05355969380010303752950436859, 3.93053310083182628517750639645, 4.86075099394627336774032390671, 5.59999648962559276088828868777, 6.13141467073513282250848454377, 6.99970705041457890283100079190, 7.64503171774460451266334485033, 8.570934080550980413168953813353

Graph of the ZZ-function along the critical line