Properties

Label 2-5400-5.4-c1-0-61
Degree $2$
Conductor $5400$
Sign $-0.447 + 0.894i$
Analytic cond. $43.1192$
Root an. cond. $6.56652$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4i·7-s + 2·11-s − 4i·13-s + i·17-s + 5·19-s − 5i·23-s − 8·29-s + 7·31-s − 6i·37-s + 6·41-s + 2i·43-s + 8i·47-s − 9·49-s − 9i·53-s − 4·59-s + ⋯
L(s)  = 1  − 1.51i·7-s + 0.603·11-s − 1.10i·13-s + 0.242i·17-s + 1.14·19-s − 1.04i·23-s − 1.48·29-s + 1.25·31-s − 0.986i·37-s + 0.937·41-s + 0.304i·43-s + 1.16i·47-s − 1.28·49-s − 1.23i·53-s − 0.520·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.447 + 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5400\)    =    \(2^{3} \cdot 3^{3} \cdot 5^{2}\)
Sign: $-0.447 + 0.894i$
Analytic conductor: \(43.1192\)
Root analytic conductor: \(6.56652\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5400} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5400,\ (\ :1/2),\ -0.447 + 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.832029897\)
\(L(\frac12)\) \(\approx\) \(1.832029897\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4iT - 7T^{2} \)
11 \( 1 - 2T + 11T^{2} \)
13 \( 1 + 4iT - 13T^{2} \)
17 \( 1 - iT - 17T^{2} \)
19 \( 1 - 5T + 19T^{2} \)
23 \( 1 + 5iT - 23T^{2} \)
29 \( 1 + 8T + 29T^{2} \)
31 \( 1 - 7T + 31T^{2} \)
37 \( 1 + 6iT - 37T^{2} \)
41 \( 1 - 6T + 41T^{2} \)
43 \( 1 - 2iT - 43T^{2} \)
47 \( 1 - 8iT - 47T^{2} \)
53 \( 1 + 9iT - 53T^{2} \)
59 \( 1 + 4T + 59T^{2} \)
61 \( 1 - 13T + 61T^{2} \)
67 \( 1 + 10iT - 67T^{2} \)
71 \( 1 + 6T + 71T^{2} \)
73 \( 1 - 6iT - 73T^{2} \)
79 \( 1 + 9T + 79T^{2} \)
83 \( 1 - 17iT - 83T^{2} \)
89 \( 1 - 6T + 89T^{2} \)
97 \( 1 + 8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.79593909787110178279249813167, −7.34332201287685559925364283471, −6.59068482433198771955878496084, −5.82533640025509501440969514072, −4.97266406245091826938568769950, −4.11691085566333923827286839761, −3.57829159514621225164626331239, −2.63152661745988196379328072350, −1.28528210237523047739542514516, −0.52823090543578266186422143339, 1.31353487338724060151061674662, 2.19025728196716371850517195257, 3.05355969380010303752950436859, 3.93053310083182628517750639645, 4.86075099394627336774032390671, 5.59999648962559276088828868777, 6.13141467073513282250848454377, 6.99970705041457890283100079190, 7.64503171774460451266334485033, 8.570934080550980413168953813353

Graph of the $Z$-function along the critical line