Properties

Label 2-5400-5.4-c1-0-25
Degree $2$
Conductor $5400$
Sign $0.447 - 0.894i$
Analytic cond. $43.1192$
Root an. cond. $6.56652$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2i·7-s + 11-s i·13-s i·17-s − 4·19-s i·23-s + 5·29-s + 31-s + 6i·37-s − 7i·43-s + 7i·47-s + 3·49-s + 12i·53-s + 4·59-s + 10·61-s + ⋯
L(s)  = 1  + 0.755i·7-s + 0.301·11-s − 0.277i·13-s − 0.242i·17-s − 0.917·19-s − 0.208i·23-s + 0.928·29-s + 0.179·31-s + 0.986i·37-s − 1.06i·43-s + 1.02i·47-s + 0.428·49-s + 1.64i·53-s + 0.520·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.447 - 0.894i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5400\)    =    \(2^{3} \cdot 3^{3} \cdot 5^{2}\)
Sign: $0.447 - 0.894i$
Analytic conductor: \(43.1192\)
Root analytic conductor: \(6.56652\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{5400} (649, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 5400,\ (\ :1/2),\ 0.447 - 0.894i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.709975122\)
\(L(\frac12)\) \(\approx\) \(1.709975122\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 - 2iT - 7T^{2} \)
11 \( 1 - T + 11T^{2} \)
13 \( 1 + iT - 13T^{2} \)
17 \( 1 + iT - 17T^{2} \)
19 \( 1 + 4T + 19T^{2} \)
23 \( 1 + iT - 23T^{2} \)
29 \( 1 - 5T + 29T^{2} \)
31 \( 1 - T + 31T^{2} \)
37 \( 1 - 6iT - 37T^{2} \)
41 \( 1 + 41T^{2} \)
43 \( 1 + 7iT - 43T^{2} \)
47 \( 1 - 7iT - 47T^{2} \)
53 \( 1 - 12iT - 53T^{2} \)
59 \( 1 - 4T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 + 4iT - 67T^{2} \)
71 \( 1 - 12T + 71T^{2} \)
73 \( 1 + 6iT - 73T^{2} \)
79 \( 1 + 15T + 79T^{2} \)
83 \( 1 + 2iT - 83T^{2} \)
89 \( 1 - 12T + 89T^{2} \)
97 \( 1 - 10iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.385505387719458446938286564844, −7.67070689557175807334461262451, −6.72779144001320854807441256832, −6.22505549548480915382681375905, −5.41465136428094452442428538847, −4.68230215194648102845723579985, −3.86943734200286838567029651915, −2.85643756423026950406725372067, −2.19035269333625169688436513937, −0.961687572878066953455925939998, 0.53453983323481518663677549440, 1.66932950422626434459552698595, 2.63368115076741450350968166267, 3.75833817454951547784460863793, 4.20806667609395150143893487289, 5.09962748974859434969231042613, 5.95743199083639168433177707665, 6.78995086703178448939484440777, 7.13515111669526287765585740295, 8.224321525524111180145217636878

Graph of the $Z$-function along the critical line