L(s) = 1 | + (1.58 − 1.58i)5-s − i·7-s + 3.16·11-s + 3i·13-s − 6.32i·17-s − 3·19-s − 3.16i·23-s − 5.00i·25-s + 9.48·29-s − 2·31-s + (−1.58 − 1.58i)35-s − i·37-s + 3.16·41-s + 10i·43-s + 6.32i·47-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)5-s − 0.377i·7-s + 0.953·11-s + 0.832i·13-s − 1.53i·17-s − 0.688·19-s − 0.659i·23-s − 1.00i·25-s + 1.76·29-s − 0.359·31-s + (−0.267 − 0.267i)35-s − 0.164i·37-s + 0.493·41-s + 1.52i·43-s + 0.922i·47-s + ⋯ |
Λ(s)=(=(540s/2ΓC(s)L(s)(0.707+0.707i)Λ(2−s)
Λ(s)=(=(540s/2ΓC(s+1/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
540
= 22⋅33⋅5
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
4.31192 |
Root analytic conductor: |
2.07651 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ540(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 540, ( :1/2), 0.707+0.707i)
|
Particular Values
L(1) |
≈ |
1.53725−0.636753i |
L(21) |
≈ |
1.53725−0.636753i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−1.58+1.58i)T |
good | 7 | 1+iT−7T2 |
| 11 | 1−3.16T+11T2 |
| 13 | 1−3iT−13T2 |
| 17 | 1+6.32iT−17T2 |
| 19 | 1+3T+19T2 |
| 23 | 1+3.16iT−23T2 |
| 29 | 1−9.48T+29T2 |
| 31 | 1+2T+31T2 |
| 37 | 1+iT−37T2 |
| 41 | 1−3.16T+41T2 |
| 43 | 1−10iT−43T2 |
| 47 | 1−6.32iT−47T2 |
| 53 | 1+9.48iT−53T2 |
| 59 | 1+6.32T+59T2 |
| 61 | 1+T+61T2 |
| 67 | 1+11iT−67T2 |
| 71 | 1+9.48T+71T2 |
| 73 | 1−13iT−73T2 |
| 79 | 1−3T+79T2 |
| 83 | 1−15.8iT−83T2 |
| 89 | 1+12.6T+89T2 |
| 97 | 1−iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.66394558388108740158397214785, −9.602449061266310040709086096207, −9.138971882917032325124576494721, −8.180086797143006838135397086891, −6.87961662612998868504155277168, −6.25582017012099008313409589401, −4.91354576492017427015098996358, −4.21871151075220772968317566886, −2.55891320612509104968977451475, −1.11141292196279116917135978453,
1.68221706706578788417056345830, 2.98148059706059539763732947131, 4.14142567463601568673380914962, 5.64314905237052058772885131642, 6.23697560124964681076913275600, 7.19536141654616463916172647649, 8.402305423639278671659480762568, 9.133847116070031301149343471843, 10.30376404642834083141339154613, 10.61786359226985500153371548654