L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + i·5-s − 0.999i·8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)16-s + i·17-s − 1.73i·19-s + (0.866 + 0.499i)20-s − 1.73·23-s − 25-s + 1.73i·31-s + (−0.866 − 0.499i)32-s + (0.5 + 0.866i)34-s + (−0.866 − 1.49i)38-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (0.499 − 0.866i)4-s + i·5-s − 0.999i·8-s + (0.5 + 0.866i)10-s + (−0.5 − 0.866i)16-s + i·17-s − 1.73i·19-s + (0.866 + 0.499i)20-s − 1.73·23-s − 25-s + 1.73i·31-s + (−0.866 − 0.499i)32-s + (0.5 + 0.866i)34-s + (−0.866 − 1.49i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.866 + 0.5i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.386696112\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.386696112\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 - T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - iT - T^{2} \) |
| 19 | \( 1 + 1.73iT - T^{2} \) |
| 23 | \( 1 + 1.73T + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 - 1.73iT - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + iT - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T + T^{2} \) |
| 67 | \( 1 + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 - 1.73T + T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.00429158635967935766255552748, −10.37083100554285840541450862264, −9.551758409027022399739321536258, −8.227315168474750093171516355143, −6.96215323502674690653887542145, −6.39259010540060493263700033141, −5.30037614698566183435265238598, −4.11522237234904982467074625773, −3.13662040918974311115975306753, −2.01934641242289609555372219838,
2.05919353424284405404061905360, 3.68449568480153973145395404011, 4.51620722251525995151590446071, 5.57961588409205093278924305213, 6.23152925981884095738600555322, 7.68354224365368074276537993379, 8.084639044163893863602298178689, 9.247391330770179373641726798397, 10.17165415983521774831511962616, 11.57048636574330633985988260267