L(s) = 1 | + (−1.25 − 0.645i)2-s + (1.16 + 1.62i)4-s + (0.0966 + 2.23i)5-s + (1.60 + 2.78i)7-s + (−0.419 − 2.79i)8-s + (1.32 − 2.87i)10-s + (1.56 + 2.70i)11-s + (−1.59 − 0.923i)13-s + (−0.225 − 4.54i)14-s + (−1.27 + 3.79i)16-s − 5.85·17-s − 2.24i·19-s + (−3.51 + 2.76i)20-s + (−0.219 − 4.41i)22-s + (3.24 + 1.87i)23-s + ⋯ |
L(s) = 1 | + (−0.889 − 0.456i)2-s + (0.583 + 0.812i)4-s + (0.0432 + 0.999i)5-s + (0.608 + 1.05i)7-s + (−0.148 − 0.988i)8-s + (0.417 − 0.908i)10-s + (0.471 + 0.816i)11-s + (−0.443 − 0.256i)13-s + (−0.0602 − 1.21i)14-s + (−0.319 + 0.947i)16-s − 1.41·17-s − 0.514i·19-s + (−0.786 + 0.617i)20-s + (−0.0467 − 0.941i)22-s + (0.676 + 0.390i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0690 - 0.997i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0690 - 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.570689 + 0.611578i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.570689 + 0.611578i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.25 + 0.645i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.0966 - 2.23i)T \) |
good | 7 | \( 1 + (-1.60 - 2.78i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.56 - 2.70i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.59 + 0.923i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 5.85T + 17T^{2} \) |
| 19 | \( 1 + 2.24iT - 19T^{2} \) |
| 23 | \( 1 + (-3.24 - 1.87i)T + (11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (6.90 - 3.98i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (1.03 + 0.599i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 2.66iT - 37T^{2} \) |
| 41 | \( 1 + (-0.208 - 0.120i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-2.66 - 4.61i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.96 + 2.28i)T + (23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 13.0T + 53T^{2} \) |
| 59 | \( 1 + (3.47 - 6.01i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.66 - 2.88i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (4.31 - 7.48i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 11.3T + 71T^{2} \) |
| 73 | \( 1 - 13.1iT - 73T^{2} \) |
| 79 | \( 1 + (11.6 - 6.72i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.07 + 0.623i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 14.3iT - 89T^{2} \) |
| 97 | \( 1 + (-5.75 + 3.32i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.16825882393915178793719588816, −10.16358721682847020555523184278, −9.234853049860156443189104849565, −8.671172666365387106246489587781, −7.36437279005993272542596962739, −6.93317115109208289717172982420, −5.62755612565747583333113443915, −4.16171909701386717475352007629, −2.72573648196657796268005624854, −1.96558153166170924395920659578,
0.63932089623913339320281330177, 1.94193068776902385550996536196, 4.05364640401531632600101421836, 5.03237692723825704761520976971, 6.14170675545581550220067149427, 7.16844535381274484904729129896, 7.996285014232872789067351221447, 8.839437699275054419910232506408, 9.427298833166582715742572190207, 10.58510156406724437255284534777