Properties

Label 2-540-108.11-c1-0-43
Degree $2$
Conductor $540$
Sign $0.999 + 0.0353i$
Analytic cond. $4.31192$
Root an. cond. $2.07651$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.11 + 0.865i)2-s + (1.71 − 0.258i)3-s + (0.500 − 1.93i)4-s + (0.342 − 0.939i)5-s + (−1.69 + 1.77i)6-s + (−1.15 − 0.203i)7-s + (1.11 + 2.59i)8-s + (2.86 − 0.886i)9-s + (0.431 + 1.34i)10-s + (2.85 − 1.03i)11-s + (0.355 − 3.44i)12-s + (−4.28 + 3.59i)13-s + (1.46 − 0.773i)14-s + (0.342 − 1.69i)15-s + (−3.49 − 1.93i)16-s + (4.31 − 2.49i)17-s + ⋯
L(s)  = 1  + (−0.790 + 0.612i)2-s + (0.988 − 0.149i)3-s + (0.250 − 0.968i)4-s + (0.152 − 0.420i)5-s + (−0.690 + 0.723i)6-s + (−0.437 − 0.0770i)7-s + (0.395 + 0.918i)8-s + (0.955 − 0.295i)9-s + (0.136 + 0.425i)10-s + (0.859 − 0.312i)11-s + (0.102 − 0.994i)12-s + (−1.18 + 0.998i)13-s + (0.392 − 0.206i)14-s + (0.0884 − 0.438i)15-s + (−0.874 − 0.484i)16-s + (1.04 − 0.604i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.999 + 0.0353i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.999 + 0.0353i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(540\)    =    \(2^{2} \cdot 3^{3} \cdot 5\)
Sign: $0.999 + 0.0353i$
Analytic conductor: \(4.31192\)
Root analytic conductor: \(2.07651\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{540} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 540,\ (\ :1/2),\ 0.999 + 0.0353i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.44689 - 0.0255496i\)
\(L(\frac12)\) \(\approx\) \(1.44689 - 0.0255496i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.11 - 0.865i)T \)
3 \( 1 + (-1.71 + 0.258i)T \)
5 \( 1 + (-0.342 + 0.939i)T \)
good7 \( 1 + (1.15 + 0.203i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (-2.85 + 1.03i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (4.28 - 3.59i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (-4.31 + 2.49i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-6.90 - 3.98i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (1.20 + 6.85i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (-1.09 + 1.30i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (-5.55 + 0.980i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (4.91 + 8.51i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (3.87 + 4.61i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-1.49 - 4.10i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (-0.473 + 2.68i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 9.27iT - 53T^{2} \)
59 \( 1 + (-2.33 - 0.848i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (1.25 - 7.12i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (1.90 + 2.27i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (-6.41 - 11.1i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (8.11 - 14.0i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-1.49 + 1.78i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-6.69 - 5.61i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-0.487 - 0.281i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (11.9 - 4.35i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.22652323037982276230166619182, −9.654061706523325690970115893144, −9.113103886397151464210621298507, −8.178791216067282068382438560485, −7.32636900892109797323698899838, −6.61508523596941594599942903427, −5.37751165892451864773691528339, −4.10965626756111994366303917515, −2.59371595631664231403237560671, −1.18016781125761405004784016955, 1.49644452053805748056277474124, 2.99861956393515224831572178484, 3.40582716146845756257451499413, 4.98919838386052760945828179922, 6.71012840383363834692151888986, 7.52546808557984816899173197757, 8.177927926433051511283460922666, 9.472432006502833901524961469141, 9.715620125182547549177949666376, 10.41943029522613378839730702507

Graph of the $Z$-function along the critical line