Properties

Label 2-540-108.11-c1-0-12
Degree $2$
Conductor $540$
Sign $-0.992 - 0.121i$
Analytic cond. $4.31192$
Root an. cond. $2.07651$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.41 − 0.0380i)2-s + (0.0948 + 1.72i)3-s + (1.99 + 0.107i)4-s + (−0.342 + 0.939i)5-s + (−0.0683 − 2.44i)6-s + (0.592 + 0.104i)7-s + (−2.81 − 0.227i)8-s + (−2.98 + 0.328i)9-s + (0.519 − 1.31i)10-s + (0.464 − 0.169i)11-s + (0.00356 + 3.46i)12-s + (−2.17 + 1.82i)13-s + (−0.833 − 0.170i)14-s + (−1.65 − 0.502i)15-s + (3.97 + 0.429i)16-s + (−6.01 + 3.47i)17-s + ⋯
L(s)  = 1  + (−0.999 − 0.0268i)2-s + (0.0547 + 0.998i)3-s + (0.998 + 0.0537i)4-s + (−0.152 + 0.420i)5-s + (−0.0279 − 0.999i)6-s + (0.223 + 0.0394i)7-s + (−0.996 − 0.0805i)8-s + (−0.994 + 0.109i)9-s + (0.164 − 0.415i)10-s + (0.140 − 0.0510i)11-s + (0.00103 + 0.999i)12-s + (−0.604 + 0.506i)13-s + (−0.222 − 0.0454i)14-s + (−0.427 − 0.129i)15-s + (0.994 + 0.107i)16-s + (−1.45 + 0.842i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.992 - 0.121i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 540 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.992 - 0.121i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(540\)    =    \(2^{2} \cdot 3^{3} \cdot 5\)
Sign: $-0.992 - 0.121i$
Analytic conductor: \(4.31192\)
Root analytic conductor: \(2.07651\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{540} (11, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 540,\ (\ :1/2),\ -0.992 - 0.121i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.0316817 + 0.518337i\)
\(L(\frac12)\) \(\approx\) \(0.0316817 + 0.518337i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (1.41 + 0.0380i)T \)
3 \( 1 + (-0.0948 - 1.72i)T \)
5 \( 1 + (0.342 - 0.939i)T \)
good7 \( 1 + (-0.592 - 0.104i)T + (6.57 + 2.39i)T^{2} \)
11 \( 1 + (-0.464 + 0.169i)T + (8.42 - 7.07i)T^{2} \)
13 \( 1 + (2.17 - 1.82i)T + (2.25 - 12.8i)T^{2} \)
17 \( 1 + (6.01 - 3.47i)T + (8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.55 - 1.47i)T + (9.5 + 16.4i)T^{2} \)
23 \( 1 + (0.0877 + 0.497i)T + (-21.6 + 7.86i)T^{2} \)
29 \( 1 + (2.14 - 2.56i)T + (-5.03 - 28.5i)T^{2} \)
31 \( 1 + (-0.719 + 0.126i)T + (29.1 - 10.6i)T^{2} \)
37 \( 1 + (1.59 + 2.76i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (2.89 + 3.44i)T + (-7.11 + 40.3i)T^{2} \)
43 \( 1 + (-2.41 - 6.63i)T + (-32.9 + 27.6i)T^{2} \)
47 \( 1 + (-0.165 + 0.937i)T + (-44.1 - 16.0i)T^{2} \)
53 \( 1 - 10.8iT - 53T^{2} \)
59 \( 1 + (6.43 + 2.34i)T + (45.1 + 37.9i)T^{2} \)
61 \( 1 + (-1.44 + 8.22i)T + (-57.3 - 20.8i)T^{2} \)
67 \( 1 + (3.49 + 4.16i)T + (-11.6 + 65.9i)T^{2} \)
71 \( 1 + (0.684 + 1.18i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (5.69 - 9.86i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (9.20 - 10.9i)T + (-13.7 - 77.7i)T^{2} \)
83 \( 1 + (-1.26 - 1.05i)T + (14.4 + 81.7i)T^{2} \)
89 \( 1 + (-12.6 - 7.28i)T + (44.5 + 77.0i)T^{2} \)
97 \( 1 + (-1.76 + 0.642i)T + (74.3 - 62.3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.02738517966019974339955993323, −10.32996171343469981395463871477, −9.450845183686899446080278482487, −8.802974289213215721428994358927, −7.894190473391518310318795960994, −6.84072988211454987437234967109, −5.87600284175658424826381507746, −4.53738261458365065072838497376, −3.35183345143746885031626350967, −2.09628896038806990256133685269, 0.38722677982382184849036843333, 1.86639737255142799879433466134, 2.99836494609053078475062748449, 4.92125487316871882391793591912, 6.10191329742227393397139704956, 7.10044399860209186810769414734, 7.66085555717151943730457817785, 8.633878234369632083450879864299, 9.241137665026908763691164330851, 10.32763970871582584772991417669

Graph of the $Z$-function along the critical line