L(s) = 1 | + (−627. − 362. i)2-s + (2.62e5 + 4.54e5i)4-s + (−5.33e6 + 3.07e6i)5-s + (−2.63e8 + 4.56e8i)7-s − 3.79e8i·8-s + 4.45e9·10-s + (3.42e10 + 1.98e10i)11-s + (−7.57e10 − 1.31e11i)13-s + (3.30e11 − 1.90e11i)14-s + (−1.37e11 + 2.38e11i)16-s − 1.43e12i·17-s − 5.01e12·19-s + (−2.79e12 − 1.61e12i)20-s + (−1.43e13 − 2.48e13i)22-s + (−3.78e13 + 2.18e13i)23-s + ⋯ |
L(s) = 1 | + (−0.612 − 0.353i)2-s + (0.249 + 0.433i)4-s + (−0.545 + 0.315i)5-s + (−0.932 + 1.61i)7-s − 0.353i·8-s + 0.445·10-s + (1.32 + 0.763i)11-s + (−0.549 − 0.951i)13-s + (1.14 − 0.659i)14-s + (−0.125 + 0.216i)16-s − 0.712i·17-s − 0.818·19-s + (−0.272 − 0.157i)20-s + (−0.539 − 0.934i)22-s + (−0.913 + 0.527i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.688 + 0.725i)\, \overline{\Lambda}(21-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+10) \, L(s)\cr =\mathstrut & (0.688 + 0.725i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{21}{2})\) |
\(\approx\) |
\(0.4311398037\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.4311398037\) |
\(L(11)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (627. + 362. i)T \) |
| 3 | \( 1 \) |
good | 5 | \( 1 + (5.33e6 - 3.07e6i)T + (4.76e13 - 8.25e13i)T^{2} \) |
| 7 | \( 1 + (2.63e8 - 4.56e8i)T + (-3.98e16 - 6.91e16i)T^{2} \) |
| 11 | \( 1 + (-3.42e10 - 1.98e10i)T + (3.36e20 + 5.82e20i)T^{2} \) |
| 13 | \( 1 + (7.57e10 + 1.31e11i)T + (-9.50e21 + 1.64e22i)T^{2} \) |
| 17 | \( 1 + 1.43e12iT - 4.06e24T^{2} \) |
| 19 | \( 1 + 5.01e12T + 3.75e25T^{2} \) |
| 23 | \( 1 + (3.78e13 - 2.18e13i)T + (8.58e26 - 1.48e27i)T^{2} \) |
| 29 | \( 1 + (3.69e14 + 2.13e14i)T + (8.84e28 + 1.53e29i)T^{2} \) |
| 31 | \( 1 + (2.91e14 + 5.05e14i)T + (-3.35e29 + 5.81e29i)T^{2} \) |
| 37 | \( 1 - 1.98e15T + 2.31e31T^{2} \) |
| 41 | \( 1 + (-4.29e15 + 2.47e15i)T + (9.00e31 - 1.56e32i)T^{2} \) |
| 43 | \( 1 + (1.01e16 - 1.75e16i)T + (-2.33e32 - 4.04e32i)T^{2} \) |
| 47 | \( 1 + (5.23e16 + 3.02e16i)T + (1.38e33 + 2.39e33i)T^{2} \) |
| 53 | \( 1 - 1.27e17iT - 3.05e34T^{2} \) |
| 59 | \( 1 + (-7.01e17 + 4.05e17i)T + (1.30e35 - 2.26e35i)T^{2} \) |
| 61 | \( 1 + (6.21e17 - 1.07e18i)T + (-2.54e35 - 4.40e35i)T^{2} \) |
| 67 | \( 1 + (5.17e17 + 8.95e17i)T + (-1.66e36 + 2.87e36i)T^{2} \) |
| 71 | \( 1 - 1.04e18iT - 1.05e37T^{2} \) |
| 73 | \( 1 - 6.74e18T + 1.84e37T^{2} \) |
| 79 | \( 1 + (5.28e18 - 9.15e18i)T + (-4.48e37 - 7.76e37i)T^{2} \) |
| 83 | \( 1 + (6.27e18 + 3.62e18i)T + (1.20e38 + 2.08e38i)T^{2} \) |
| 89 | \( 1 - 4.67e18iT - 9.72e38T^{2} \) |
| 97 | \( 1 + (1.18e19 - 2.05e19i)T + (-2.71e39 - 4.70e39i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.44583466824107824404533888831, −9.785274898436085724698789236525, −9.279765411579001955105423730701, −7.989526230303235208821185295751, −6.79837778960418132168683146252, −5.66418207736811730889750190047, −3.92552904248014248920974157334, −2.82441119701668545461956695211, −1.87808120003321365104870980898, −0.18763814849967268584768173349,
0.54894784691468728903389561053, 1.68094954951894827036152547779, 3.64884201272711156293118940305, 4.29500965067365065813694057450, 6.30641032183420466065560832719, 6.92293634368559548365368151847, 8.147849289251136832841715640010, 9.259377587628783092879410642400, 10.27375331388841374016316329680, 11.32710910448713469378057106843