Properties

Label 2-54-3.2-c20-0-11
Degree $2$
Conductor $54$
Sign $i$
Analytic cond. $136.897$
Root an. cond. $11.7003$
Motivic weight $20$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 724. i·2-s − 5.24e5·4-s − 1.15e7i·5-s − 3.17e8·7-s + 3.79e8i·8-s − 8.36e9·10-s − 3.19e10i·11-s + 1.06e11·13-s + 2.29e11i·14-s + 2.74e11·16-s + 1.49e12i·17-s + 5.79e12·19-s + 6.05e12i·20-s − 2.31e13·22-s + 6.13e13i·23-s + ⋯
L(s)  = 1  − 0.707i·2-s − 0.500·4-s − 1.18i·5-s − 1.12·7-s + 0.353i·8-s − 0.836·10-s − 1.23i·11-s + 0.771·13-s + 0.794i·14-s + 0.250·16-s + 0.743i·17-s + 0.944·19-s + 0.591i·20-s − 0.870·22-s + 1.48i·23-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(21-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+10) \, L(s)\cr =\mathstrut & i\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $i$
Analytic conductor: \(136.897\)
Root analytic conductor: \(11.7003\)
Motivic weight: \(20\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (53, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :10),\ i)\)

Particular Values

\(L(\frac{21}{2})\) \(\approx\) \(1.855209870\)
\(L(\frac12)\) \(\approx\) \(1.855209870\)
\(L(11)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 724. iT \)
3 \( 1 \)
good5 \( 1 + 1.15e7iT - 9.53e13T^{2} \)
7 \( 1 + 3.17e8T + 7.97e16T^{2} \)
11 \( 1 + 3.19e10iT - 6.72e20T^{2} \)
13 \( 1 - 1.06e11T + 1.90e22T^{2} \)
17 \( 1 - 1.49e12iT - 4.06e24T^{2} \)
19 \( 1 - 5.79e12T + 3.75e25T^{2} \)
23 \( 1 - 6.13e13iT - 1.71e27T^{2} \)
29 \( 1 - 2.01e14iT - 1.76e29T^{2} \)
31 \( 1 - 1.51e15T + 6.71e29T^{2} \)
37 \( 1 - 4.25e15T + 2.31e31T^{2} \)
41 \( 1 + 1.13e16iT - 1.80e32T^{2} \)
43 \( 1 + 3.42e16T + 4.67e32T^{2} \)
47 \( 1 - 3.39e16iT - 2.76e33T^{2} \)
53 \( 1 - 2.16e17iT - 3.05e34T^{2} \)
59 \( 1 - 9.09e16iT - 2.61e35T^{2} \)
61 \( 1 - 2.23e17T + 5.08e35T^{2} \)
67 \( 1 - 2.35e18T + 3.32e36T^{2} \)
71 \( 1 - 3.01e18iT - 1.05e37T^{2} \)
73 \( 1 - 3.66e18T + 1.84e37T^{2} \)
79 \( 1 - 1.31e19T + 8.96e37T^{2} \)
83 \( 1 + 1.15e19iT - 2.40e38T^{2} \)
89 \( 1 - 6.32e18iT - 9.72e38T^{2} \)
97 \( 1 + 6.37e18T + 5.43e39T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.21773400555107761393772296656, −9.905939717279879514050084111279, −9.007408635296236949374266367986, −8.122021393637029993385848128337, −6.25324311289078920883591288181, −5.26671804463660670820414754978, −3.82969565121854054711025776072, −3.03914595714195134963667992164, −1.31119556706001566639719443853, −0.67987750877347214129506989961, 0.63577403282183119974548151830, 2.49625334849143654502158031556, 3.46047407042212188654914882376, 4.82236859924331051743401726404, 6.47869148896908066979596755938, 6.73856231755160909632674183621, 8.047104515203580228370956892631, 9.597403229728244866163449325451, 10.21360812079084602596268853225, 11.68621007280651139702275438056

Graph of the $Z$-function along the critical line