L(s) = 1 | + (0.939 − 0.342i)2-s + (−1.11 − 1.32i)3-s + (0.766 − 0.642i)4-s + (0.439 + 2.49i)5-s + (−1.5 − 0.866i)6-s + (−1.79 − 1.50i)7-s + (0.500 − 0.866i)8-s + (−0.520 + 2.95i)9-s + (1.26 + 2.19i)10-s + (−0.745 + 4.22i)11-s + (−1.70 − 0.300i)12-s + (−0.713 − 0.259i)13-s + (−2.20 − 0.802i)14-s + (2.81 − 3.35i)15-s + (0.173 − 0.984i)16-s + (−2.46 − 4.26i)17-s + ⋯ |
L(s) = 1 | + (0.664 − 0.241i)2-s + (−0.642 − 0.766i)3-s + (0.383 − 0.321i)4-s + (0.196 + 1.11i)5-s + (−0.612 − 0.353i)6-s + (−0.679 − 0.570i)7-s + (0.176 − 0.306i)8-s + (−0.173 + 0.984i)9-s + (0.400 + 0.693i)10-s + (−0.224 + 1.27i)11-s + (−0.492 − 0.0868i)12-s + (−0.197 − 0.0719i)13-s + (−0.589 − 0.214i)14-s + (0.727 − 0.867i)15-s + (0.0434 − 0.246i)16-s + (−0.596 − 1.03i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.835+0.549i)Λ(2−s)
Λ(s)=(=(54s/2ΓC(s+1/2)L(s)(0.835+0.549i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.835+0.549i
|
Analytic conductor: |
0.431192 |
Root analytic conductor: |
0.656652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1/2), 0.835+0.549i)
|
Particular Values
L(1) |
≈ |
0.929566−0.278293i |
L(21) |
≈ |
0.929566−0.278293i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.939+0.342i)T |
| 3 | 1+(1.11+1.32i)T |
good | 5 | 1+(−0.439−2.49i)T+(−4.69+1.71i)T2 |
| 7 | 1+(1.79+1.50i)T+(1.21+6.89i)T2 |
| 11 | 1+(0.745−4.22i)T+(−10.3−3.76i)T2 |
| 13 | 1+(0.713+0.259i)T+(9.95+8.35i)T2 |
| 17 | 1+(2.46+4.26i)T+(−8.5+14.7i)T2 |
| 19 | 1+(−3.62+6.27i)T+(−9.5−16.4i)T2 |
| 23 | 1+(0.233−0.196i)T+(3.99−22.6i)T2 |
| 29 | 1+(−2.91+1.06i)T+(22.2−18.6i)T2 |
| 31 | 1+(6.58−5.52i)T+(5.38−30.5i)T2 |
| 37 | 1+(−3.78−6.55i)T+(−18.5+32.0i)T2 |
| 41 | 1+(4.60+1.67i)T+(31.4+26.3i)T2 |
| 43 | 1+(0.283−1.60i)T+(−40.4−14.7i)T2 |
| 47 | 1+(1.39+1.16i)T+(8.16+46.2i)T2 |
| 53 | 1−0.573T+53T2 |
| 59 | 1+(−0.950−5.39i)T+(−55.4+20.1i)T2 |
| 61 | 1+(−8.46−7.10i)T+(10.5+60.0i)T2 |
| 67 | 1+(0.0393+0.0143i)T+(51.3+43.0i)T2 |
| 71 | 1+(−2.10−3.64i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−5.54+9.60i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−6.92+2.52i)T+(60.5−50.7i)T2 |
| 83 | 1+(6.41−2.33i)T+(63.5−53.3i)T2 |
| 89 | 1+(3.96−6.86i)T+(−44.5−77.0i)T2 |
| 97 | 1+(0.570−3.23i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.11869521607941332312603868635, −13.84702960009547673667086079729, −13.12558336336656766506595488042, −11.91714563610639375103515204358, −10.87797341539091563079830117386, −9.842787852491263120741460873091, −7.11390196016222587747188680258, −6.81778934042816611592621963328, −4.98056117730359741131778298575, −2.70182334989983768221891677530,
3.73362244416975614718113193614, 5.36002748445467669611286149486, 6.11644928847088868153130300080, 8.421337929443840754432665237503, 9.584600478947968357259233567496, 11.05447164511094643243591016677, 12.28217799209658423776321063989, 13.03477811383327586193709992224, 14.47011777915254830561903046478, 15.77621274435088217946463173599