L(s) = 1 | + (−0.939 + 0.342i)2-s + (0.552 − 1.64i)3-s + (0.766 − 0.642i)4-s + (−0.177 − 1.00i)5-s + (0.0419 + 1.73i)6-s + (2.04 + 1.71i)7-s + (−0.500 + 0.866i)8-s + (−2.38 − 1.81i)9-s + (0.510 + 0.884i)10-s + (−0.720 + 4.08i)11-s + (−0.631 − 1.61i)12-s + (−3.68 − 1.34i)13-s + (−2.50 − 0.912i)14-s + (−1.74 − 0.264i)15-s + (0.173 − 0.984i)16-s + (0.925 + 1.60i)17-s + ⋯ |
L(s) = 1 | + (−0.664 + 0.241i)2-s + (0.319 − 0.947i)3-s + (0.383 − 0.321i)4-s + (−0.0793 − 0.449i)5-s + (0.0171 + 0.706i)6-s + (0.772 + 0.647i)7-s + (−0.176 + 0.306i)8-s + (−0.796 − 0.604i)9-s + (0.161 + 0.279i)10-s + (−0.217 + 1.23i)11-s + (−0.182 − 0.465i)12-s + (−1.02 − 0.371i)13-s + (−0.669 − 0.243i)14-s + (−0.451 − 0.0684i)15-s + (0.0434 − 0.246i)16-s + (0.224 + 0.388i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.873+0.487i)Λ(2−s)
Λ(s)=(=(54s/2ΓC(s+1/2)L(s)(0.873+0.487i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.873+0.487i
|
Analytic conductor: |
0.431192 |
Root analytic conductor: |
0.656652 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(7,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1/2), 0.873+0.487i)
|
Particular Values
L(1) |
≈ |
0.684092−0.177982i |
L(21) |
≈ |
0.684092−0.177982i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.939−0.342i)T |
| 3 | 1+(−0.552+1.64i)T |
good | 5 | 1+(0.177+1.00i)T+(−4.69+1.71i)T2 |
| 7 | 1+(−2.04−1.71i)T+(1.21+6.89i)T2 |
| 11 | 1+(0.720−4.08i)T+(−10.3−3.76i)T2 |
| 13 | 1+(3.68+1.34i)T+(9.95+8.35i)T2 |
| 17 | 1+(−0.925−1.60i)T+(−8.5+14.7i)T2 |
| 19 | 1+(3.21−5.57i)T+(−9.5−16.4i)T2 |
| 23 | 1+(−6.69+5.61i)T+(3.99−22.6i)T2 |
| 29 | 1+(1.17−0.428i)T+(22.2−18.6i)T2 |
| 31 | 1+(2.56−2.15i)T+(5.38−30.5i)T2 |
| 37 | 1+(4.58+7.94i)T+(−18.5+32.0i)T2 |
| 41 | 1+(3.53+1.28i)T+(31.4+26.3i)T2 |
| 43 | 1+(−0.536+3.04i)T+(−40.4−14.7i)T2 |
| 47 | 1+(2.11+1.77i)T+(8.16+46.2i)T2 |
| 53 | 1+0.231T+53T2 |
| 59 | 1+(−0.613−3.48i)T+(−55.4+20.1i)T2 |
| 61 | 1+(−0.405−0.339i)T+(10.5+60.0i)T2 |
| 67 | 1+(−7.67−2.79i)T+(51.3+43.0i)T2 |
| 71 | 1+(4.03+6.98i)T+(−35.5+61.4i)T2 |
| 73 | 1+(−1.57+2.72i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−2.43+0.886i)T+(60.5−50.7i)T2 |
| 83 | 1+(−7.55+2.74i)T+(63.5−53.3i)T2 |
| 89 | 1+(6.12−10.6i)T+(−44.5−77.0i)T2 |
| 97 | 1+(1.51−8.57i)T+(−91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.93429173397734085013910976492, −14.63899056561241445357673567825, −12.63432735249090237157230699214, −12.23056438020642826027399933696, −10.52907970405077909816942499740, −8.983127075841165661409172852424, −8.067362704092046075914041917458, −6.96114451524025263038274085798, −5.21576089903790852035786638133, −2.07713370685981269596023571491,
3.07807768430759731796366311785, 4.92801450494612008646801785527, 7.17638713467436565895528380467, 8.489307361361171263836544814333, 9.611936908246278466799754183946, 10.94257858274066432470952569801, 11.32033399922844689736679790448, 13.43476044182148212895669617862, 14.55736832960162331842961831637, 15.47463132599823605608320873180