L(s) = 1 | + (−0.939 + 0.342i)2-s + (0.552 − 1.64i)3-s + (0.766 − 0.642i)4-s + (−0.177 − 1.00i)5-s + (0.0419 + 1.73i)6-s + (2.04 + 1.71i)7-s + (−0.500 + 0.866i)8-s + (−2.38 − 1.81i)9-s + (0.510 + 0.884i)10-s + (−0.720 + 4.08i)11-s + (−0.631 − 1.61i)12-s + (−3.68 − 1.34i)13-s + (−2.50 − 0.912i)14-s + (−1.74 − 0.264i)15-s + (0.173 − 0.984i)16-s + (0.925 + 1.60i)17-s + ⋯ |
L(s) = 1 | + (−0.664 + 0.241i)2-s + (0.319 − 0.947i)3-s + (0.383 − 0.321i)4-s + (−0.0793 − 0.449i)5-s + (0.0171 + 0.706i)6-s + (0.772 + 0.647i)7-s + (−0.176 + 0.306i)8-s + (−0.796 − 0.604i)9-s + (0.161 + 0.279i)10-s + (−0.217 + 1.23i)11-s + (−0.182 − 0.465i)12-s + (−1.02 − 0.371i)13-s + (−0.669 − 0.243i)14-s + (−0.451 − 0.0684i)15-s + (0.0434 − 0.246i)16-s + (0.224 + 0.388i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.873 + 0.487i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.873 + 0.487i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.684092 - 0.177982i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.684092 - 0.177982i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.939 - 0.342i)T \) |
| 3 | \( 1 + (-0.552 + 1.64i)T \) |
good | 5 | \( 1 + (0.177 + 1.00i)T + (-4.69 + 1.71i)T^{2} \) |
| 7 | \( 1 + (-2.04 - 1.71i)T + (1.21 + 6.89i)T^{2} \) |
| 11 | \( 1 + (0.720 - 4.08i)T + (-10.3 - 3.76i)T^{2} \) |
| 13 | \( 1 + (3.68 + 1.34i)T + (9.95 + 8.35i)T^{2} \) |
| 17 | \( 1 + (-0.925 - 1.60i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.21 - 5.57i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.69 + 5.61i)T + (3.99 - 22.6i)T^{2} \) |
| 29 | \( 1 + (1.17 - 0.428i)T + (22.2 - 18.6i)T^{2} \) |
| 31 | \( 1 + (2.56 - 2.15i)T + (5.38 - 30.5i)T^{2} \) |
| 37 | \( 1 + (4.58 + 7.94i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (3.53 + 1.28i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-0.536 + 3.04i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (2.11 + 1.77i)T + (8.16 + 46.2i)T^{2} \) |
| 53 | \( 1 + 0.231T + 53T^{2} \) |
| 59 | \( 1 + (-0.613 - 3.48i)T + (-55.4 + 20.1i)T^{2} \) |
| 61 | \( 1 + (-0.405 - 0.339i)T + (10.5 + 60.0i)T^{2} \) |
| 67 | \( 1 + (-7.67 - 2.79i)T + (51.3 + 43.0i)T^{2} \) |
| 71 | \( 1 + (4.03 + 6.98i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + (-1.57 + 2.72i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (-2.43 + 0.886i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-7.55 + 2.74i)T + (63.5 - 53.3i)T^{2} \) |
| 89 | \( 1 + (6.12 - 10.6i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (1.51 - 8.57i)T + (-91.1 - 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.93429173397734085013910976492, −14.63899056561241445357673567825, −12.63432735249090237157230699214, −12.23056438020642826027399933696, −10.52907970405077909816942499740, −8.983127075841165661409172852424, −8.067362704092046075914041917458, −6.96114451524025263038274085798, −5.21576089903790852035786638133, −2.07713370685981269596023571491,
3.07807768430759731796366311785, 4.92801450494612008646801785527, 7.17638713467436565895528380467, 8.489307361361171263836544814333, 9.611936908246278466799754183946, 10.94257858274066432470952569801, 11.32033399922844689736679790448, 13.43476044182148212895669617862, 14.55736832960162331842961831637, 15.47463132599823605608320873180