Properties

Label 2-54-27.7-c1-0-0
Degree $2$
Conductor $54$
Sign $0.130 - 0.991i$
Analytic cond. $0.431192$
Root an. cond. $0.656652$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.939 + 0.342i)2-s + (−1.14 + 1.29i)3-s + (0.766 − 0.642i)4-s + (0.617 + 3.49i)5-s + (0.631 − 1.61i)6-s + (−0.244 − 0.205i)7-s + (−0.500 + 0.866i)8-s + (−0.377 − 2.97i)9-s + (−1.77 − 3.07i)10-s + (0.773 − 4.38i)11-s + (−0.0419 + 1.73i)12-s + (4.39 + 1.60i)13-s + (0.300 + 0.109i)14-s + (−5.25 − 3.20i)15-s + (0.173 − 0.984i)16-s + (−0.567 − 0.982i)17-s + ⋯
L(s)  = 1  + (−0.664 + 0.241i)2-s + (−0.661 + 0.750i)3-s + (0.383 − 0.321i)4-s + (0.275 + 1.56i)5-s + (0.257 − 0.658i)6-s + (−0.0925 − 0.0776i)7-s + (−0.176 + 0.306i)8-s + (−0.125 − 0.992i)9-s + (−0.561 − 0.973i)10-s + (0.233 − 1.32i)11-s + (−0.0121 + 0.499i)12-s + (1.21 + 0.443i)13-s + (0.0802 + 0.0292i)14-s + (−1.35 − 0.827i)15-s + (0.0434 − 0.246i)16-s + (−0.137 − 0.238i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $0.130 - 0.991i$
Analytic conductor: \(0.431192\)
Root analytic conductor: \(0.656652\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (7, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1/2),\ 0.130 - 0.991i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.427387 + 0.374810i\)
\(L(\frac12)\) \(\approx\) \(0.427387 + 0.374810i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.939 - 0.342i)T \)
3 \( 1 + (1.14 - 1.29i)T \)
good5 \( 1 + (-0.617 - 3.49i)T + (-4.69 + 1.71i)T^{2} \)
7 \( 1 + (0.244 + 0.205i)T + (1.21 + 6.89i)T^{2} \)
11 \( 1 + (-0.773 + 4.38i)T + (-10.3 - 3.76i)T^{2} \)
13 \( 1 + (-4.39 - 1.60i)T + (9.95 + 8.35i)T^{2} \)
17 \( 1 + (0.567 + 0.982i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (0.928 - 1.60i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-0.110 + 0.0926i)T + (3.99 - 22.6i)T^{2} \)
29 \( 1 + (-4.09 + 1.49i)T + (22.2 - 18.6i)T^{2} \)
31 \( 1 + (-0.514 + 0.431i)T + (5.38 - 30.5i)T^{2} \)
37 \( 1 + (3.79 + 6.57i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 + (2.04 + 0.744i)T + (31.4 + 26.3i)T^{2} \)
43 \( 1 + (1.23 - 6.98i)T + (-40.4 - 14.7i)T^{2} \)
47 \( 1 + (7.91 + 6.63i)T + (8.16 + 46.2i)T^{2} \)
53 \( 1 - 0.805T + 53T^{2} \)
59 \( 1 + (-0.517 - 2.93i)T + (-55.4 + 20.1i)T^{2} \)
61 \( 1 + (2.67 + 2.24i)T + (10.5 + 60.0i)T^{2} \)
67 \( 1 + (6.99 + 2.54i)T + (51.3 + 43.0i)T^{2} \)
71 \( 1 + (-4.04 - 7.01i)T + (-35.5 + 61.4i)T^{2} \)
73 \( 1 + (7.30 - 12.6i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (-11.8 + 4.30i)T + (60.5 - 50.7i)T^{2} \)
83 \( 1 + (-5.08 + 1.85i)T + (63.5 - 53.3i)T^{2} \)
89 \( 1 + (2.52 - 4.37i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-3.24 + 18.3i)T + (-91.1 - 33.1i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.85307927996238967404995827641, −14.73041889051877472384383099335, −13.77457170470180612909831972966, −11.52262382244825643286417455686, −10.91256518198200206661807125523, −10.01504074947853443799202340980, −8.630142869683277440539490204559, −6.71241493544558731484101917092, −5.95663554087565013889154636311, −3.45391049160437654506309570118, 1.47095584505163990617267129332, 4.86079399754260743684800646591, 6.43006674570982844850435019174, 8.018126147281152179353968330278, 9.060438024757833575397109753500, 10.45635523574424483948992755587, 11.90260081117201195592799047914, 12.66383286458399918696398095680, 13.47216914380084608913108096772, 15.56832045060345316976878043247

Graph of the $Z$-function along the critical line