L(s) = 1 | + (−7.27 − 8.66i)2-s + (−71.9 + 37.1i)3-s + (−22.2 + 126. i)4-s + (242. + 667. i)5-s + (845. + 353. i)6-s + (702. + 3.98e3i)7-s + (1.25e3 − 724. i)8-s + (3.80e3 − 5.34e3i)9-s + (4.01e3 − 6.95e3i)10-s + (−675. + 1.85e3i)11-s + (−3.08e3 − 9.89e3i)12-s + (5.27e3 + 4.42e3i)13-s + (2.94e4 − 3.50e4i)14-s + (−4.22e4 − 3.89e4i)15-s + (−1.53e4 − 5.60e3i)16-s + (8.59e4 + 4.96e4i)17-s + ⋯ |
L(s) = 1 | + (−0.454 − 0.541i)2-s + (−0.888 + 0.458i)3-s + (−0.0868 + 0.492i)4-s + (0.388 + 1.06i)5-s + (0.652 + 0.272i)6-s + (0.292 + 1.65i)7-s + (0.306 − 0.176i)8-s + (0.579 − 0.815i)9-s + (0.401 − 0.695i)10-s + (−0.0461 + 0.126i)11-s + (−0.148 − 0.477i)12-s + (0.184 + 0.154i)13-s + (0.765 − 0.912i)14-s + (−0.834 − 0.770i)15-s + (−0.234 − 0.0855i)16-s + (1.02 + 0.594i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.821−0.570i)Λ(9−s)
Λ(s)=(=(54s/2ΓC(s+4)L(s)(−0.821−0.570i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.821−0.570i
|
Analytic conductor: |
21.9984 |
Root analytic conductor: |
4.69024 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :4), −0.821−0.570i)
|
Particular Values
L(29) |
≈ |
0.297921+0.951113i |
L(21) |
≈ |
0.297921+0.951113i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(7.27+8.66i)T |
| 3 | 1+(71.9−37.1i)T |
good | 5 | 1+(−242.−667.i)T+(−2.99e5+2.51e5i)T2 |
| 7 | 1+(−702.−3.98e3i)T+(−5.41e6+1.97e6i)T2 |
| 11 | 1+(675.−1.85e3i)T+(−1.64e8−1.37e8i)T2 |
| 13 | 1+(−5.27e3−4.42e3i)T+(1.41e8+8.03e8i)T2 |
| 17 | 1+(−8.59e4−4.96e4i)T+(3.48e9+6.04e9i)T2 |
| 19 | 1+(−7.98e4−1.38e5i)T+(−8.49e9+1.47e10i)T2 |
| 23 | 1+(3.83e5+6.76e4i)T+(7.35e10+2.67e10i)T2 |
| 29 | 1+(−5.84e5−6.96e5i)T+(−8.68e10+4.92e11i)T2 |
| 31 | 1+(−7.09e4+4.02e5i)T+(−8.01e11−2.91e11i)T2 |
| 37 | 1+(1.78e6−3.09e6i)T+(−1.75e12−3.04e12i)T2 |
| 41 | 1+(−1.55e6+1.85e6i)T+(−1.38e12−7.86e12i)T2 |
| 43 | 1+(5.76e6+2.09e6i)T+(8.95e12+7.51e12i)T2 |
| 47 | 1+(−3.95e6+6.98e5i)T+(2.23e13−8.14e12i)T2 |
| 53 | 1+9.23e6iT−6.22e13T2 |
| 59 | 1+(−2.34e6−6.44e6i)T+(−1.12e14+9.43e13i)T2 |
| 61 | 1+(4.42e6+2.50e7i)T+(−1.80e14+6.55e13i)T2 |
| 67 | 1+(3.41e6+2.86e6i)T+(7.05e13+3.99e14i)T2 |
| 71 | 1+(−1.78e7−1.03e7i)T+(3.22e14+5.59e14i)T2 |
| 73 | 1+(4.93e6+8.54e6i)T+(−4.03e14+6.98e14i)T2 |
| 79 | 1+(2.85e6−2.39e6i)T+(2.63e14−1.49e15i)T2 |
| 83 | 1+(−2.82e6−3.37e6i)T+(−3.91e14+2.21e15i)T2 |
| 89 | 1+(−5.18e7+2.99e7i)T+(1.96e15−3.40e15i)T2 |
| 97 | 1+(2.82e7+1.02e7i)T+(6.00e15+5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.25995087164078488043399320204, −12.27873265765880220907455531988, −11.83677219371768758241477610190, −10.49634660511037665298233785108, −9.798862923455957304476295061814, −8.315352347971550299063801108107, −6.45628330455895063478363050743, −5.38687316894959664806331983044, −3.35374245251395298404125668504, −1.79372094690095291471864657033,
0.52223759005282823575074389053, 1.25819894759700699711819639935, 4.50352713414111150557129975963, 5.61448275406299435504806286656, 7.08294760078383474501326729969, 8.014092050433559868302566757968, 9.691455155439598835559730081909, 10.69840065538176900651555614794, 12.00587494182378387114147959203, 13.39459758177659909492720428588