L(s) = 1 | + (−7.27 − 8.66i)2-s + (7.33 + 80.6i)3-s + (−22.2 + 126. i)4-s + (58.6 + 161. i)5-s + (645. − 650. i)6-s + (−371. − 2.10e3i)7-s + (1.25e3 − 724. i)8-s + (−6.45e3 + 1.18e3i)9-s + (969. − 1.67e3i)10-s + (6.80e3 − 1.87e4i)11-s + (−1.03e4 − 867. i)12-s + (−1.07e3 − 898. i)13-s + (−1.55e4 + 1.85e4i)14-s + (−1.25e4 + 5.91e3i)15-s + (−1.53e4 − 5.60e3i)16-s + (5.04e4 + 2.91e4i)17-s + ⋯ |
L(s) = 1 | + (−0.454 − 0.541i)2-s + (0.0905 + 0.995i)3-s + (−0.0868 + 0.492i)4-s + (0.0938 + 0.257i)5-s + (0.498 − 0.501i)6-s + (−0.154 − 0.877i)7-s + (0.306 − 0.176i)8-s + (−0.983 + 0.180i)9-s + (0.0969 − 0.167i)10-s + (0.465 − 1.27i)11-s + (−0.498 − 0.0418i)12-s + (−0.0374 − 0.0314i)13-s + (−0.405 + 0.482i)14-s + (−0.248 + 0.116i)15-s + (−0.234 − 0.0855i)16-s + (0.604 + 0.348i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.981+0.192i)Λ(9−s)
Λ(s)=(=(54s/2ΓC(s+4)L(s)(0.981+0.192i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.981+0.192i
|
Analytic conductor: |
21.9984 |
Root analytic conductor: |
4.69024 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(5,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :4), 0.981+0.192i)
|
Particular Values
L(29) |
≈ |
1.49499−0.144914i |
L(21) |
≈ |
1.49499−0.144914i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(7.27+8.66i)T |
| 3 | 1+(−7.33−80.6i)T |
good | 5 | 1+(−58.6−161.i)T+(−2.99e5+2.51e5i)T2 |
| 7 | 1+(371.+2.10e3i)T+(−5.41e6+1.97e6i)T2 |
| 11 | 1+(−6.80e3+1.87e4i)T+(−1.64e8−1.37e8i)T2 |
| 13 | 1+(1.07e3+898.i)T+(1.41e8+8.03e8i)T2 |
| 17 | 1+(−5.04e4−2.91e4i)T+(3.48e9+6.04e9i)T2 |
| 19 | 1+(−8.93e4−1.54e5i)T+(−8.49e9+1.47e10i)T2 |
| 23 | 1+(1.28e5+2.26e4i)T+(7.35e10+2.67e10i)T2 |
| 29 | 1+(−7.69e5−9.17e5i)T+(−8.68e10+4.92e11i)T2 |
| 31 | 1+(−1.38e5+7.84e5i)T+(−8.01e11−2.91e11i)T2 |
| 37 | 1+(−1.31e6+2.27e6i)T+(−1.75e12−3.04e12i)T2 |
| 41 | 1+(2.32e5−2.77e5i)T+(−1.38e12−7.86e12i)T2 |
| 43 | 1+(−4.97e6−1.81e6i)T+(8.95e12+7.51e12i)T2 |
| 47 | 1+(−1.90e5+3.35e4i)T+(2.23e13−8.14e12i)T2 |
| 53 | 1−8.84e6iT−6.22e13T2 |
| 59 | 1+(−3.69e5−1.01e6i)T+(−1.12e14+9.43e13i)T2 |
| 61 | 1+(−1.22e6−6.96e6i)T+(−1.80e14+6.55e13i)T2 |
| 67 | 1+(−5.96e5−5.00e5i)T+(7.05e13+3.99e14i)T2 |
| 71 | 1+(2.19e7+1.26e7i)T+(3.22e14+5.59e14i)T2 |
| 73 | 1+(1.40e7+2.43e7i)T+(−4.03e14+6.98e14i)T2 |
| 79 | 1+(−5.12e7+4.29e7i)T+(2.63e14−1.49e15i)T2 |
| 83 | 1+(−3.12e7−3.71e7i)T+(−3.91e14+2.21e15i)T2 |
| 89 | 1+(−2.76e7+1.59e7i)T+(1.96e15−3.40e15i)T2 |
| 97 | 1+(1.10e7+4.02e6i)T+(6.00e15+5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.83735385121327424846906931651, −12.15708807259068298195141822143, −10.87493779398124480459047312019, −10.26951747329798352242367820613, −9.074952684679517980143291689658, −7.85300577542194374953030839825, −5.96608147630969281001313196392, −4.08883339474507246092321251623, −3.07669967887439319524130291682, −0.831071189573786450087928275666,
0.997594772795874764688210137680, 2.49472573222536393438904515181, 5.08607813982018902978395478331, 6.45931576488427194385826825772, 7.49431987106399448511695283294, 8.768854702782200426771553747121, 9.731454597532871776431529518832, 11.65571880064961694204317398388, 12.49228673332682350122385965156, 13.72957255512336127780697006354