L(s) = 1 | + (−0.483 + 1.32i)2-s + (−0.391 − 2.97i)3-s + (−1.53 − 1.28i)4-s + (7.52 + 1.32i)5-s + (4.14 + 0.918i)6-s + (4.40 − 3.69i)7-s + (2.44 − 1.41i)8-s + (−8.69 + 2.33i)9-s + (−5.40 + 9.35i)10-s + (8.02 − 1.41i)11-s + (−3.22 + 5.06i)12-s + (−22.0 + 8.02i)13-s + (2.78 + 7.64i)14-s + (0.998 − 22.8i)15-s + (0.694 + 3.93i)16-s + (6.39 + 3.69i)17-s + ⋯ |
L(s) = 1 | + (−0.241 + 0.664i)2-s + (−0.130 − 0.991i)3-s + (−0.383 − 0.321i)4-s + (1.50 + 0.265i)5-s + (0.690 + 0.153i)6-s + (0.629 − 0.528i)7-s + (0.306 − 0.176i)8-s + (−0.965 + 0.258i)9-s + (−0.540 + 0.935i)10-s + (0.729 − 0.128i)11-s + (−0.268 + 0.421i)12-s + (−1.69 + 0.617i)13-s + (0.198 + 0.546i)14-s + (0.0665 − 1.52i)15-s + (0.0434 + 0.246i)16-s + (0.376 + 0.217i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.997+0.0725i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.997+0.0725i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.997+0.0725i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.997+0.0725i)
|
Particular Values
L(23) |
≈ |
1.15734−0.0420098i |
L(21) |
≈ |
1.15734−0.0420098i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.483−1.32i)T |
| 3 | 1+(0.391+2.97i)T |
good | 5 | 1+(−7.52−1.32i)T+(23.4+8.55i)T2 |
| 7 | 1+(−4.40+3.69i)T+(8.50−48.2i)T2 |
| 11 | 1+(−8.02+1.41i)T+(113.−41.3i)T2 |
| 13 | 1+(22.0−8.02i)T+(129.−108.i)T2 |
| 17 | 1+(−6.39−3.69i)T+(144.5+250.i)T2 |
| 19 | 1+(7.80+13.5i)T+(−180.5+312.i)T2 |
| 23 | 1+(19.9−23.8i)T+(−91.8−520.i)T2 |
| 29 | 1+(9.68−26.6i)T+(−644.−540.i)T2 |
| 31 | 1+(−12.2−10.2i)T+(166.+946.i)T2 |
| 37 | 1+(−5.99+10.3i)T+(−684.5−1.18e3i)T2 |
| 41 | 1+(−2.82−7.76i)T+(−1.28e3+1.08e3i)T2 |
| 43 | 1+(7.82+44.3i)T+(−1.73e3+632.i)T2 |
| 47 | 1+(43.4+51.7i)T+(−383.+2.17e3i)T2 |
| 53 | 1−16.4iT−2.80e3T2 |
| 59 | 1+(−57.3−10.1i)T+(3.27e3+1.19e3i)T2 |
| 61 | 1+(−54.6+45.8i)T+(646.−3.66e3i)T2 |
| 67 | 1+(47.1−17.1i)T+(3.43e3−2.88e3i)T2 |
| 71 | 1+(−35.4−20.4i)T+(2.52e3+4.36e3i)T2 |
| 73 | 1+(49.7+86.2i)T+(−2.66e3+4.61e3i)T2 |
| 79 | 1+(72.4+26.3i)T+(4.78e3+4.01e3i)T2 |
| 83 | 1+(−36.0+99.1i)T+(−5.27e3−4.42e3i)T2 |
| 89 | 1+(0.302−0.174i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(−11.1−62.9i)T+(−8.84e3+3.21e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.58077349817188532013408969542, −14.17417273490219947001399850895, −13.18901748325731551696080311004, −11.76164261165693013207419396042, −10.21591979810096149385330540051, −9.051052491769334937187299131772, −7.45346337405598955660737900625, −6.52310837163220674091954218943, −5.22279972350027477935399161181, −1.85497383287076393216452859612,
2.36590486683348285496550295967, 4.66887554076336065137421856876, 5.86101738981120090715707502114, 8.372464282198834270060882717426, 9.753128063155606639688239273749, 10.00374708619459914866121433884, 11.59626516548291808063499681409, 12.63887665470485342755307541118, 14.23213424166924098921387922894, 14.80761738471473379537600217888