Properties

Label 2-54-27.23-c2-0-3
Degree $2$
Conductor $54$
Sign $0.997 + 0.0725i$
Analytic cond. $1.47139$
Root an. cond. $1.21301$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.483 + 1.32i)2-s + (−0.391 − 2.97i)3-s + (−1.53 − 1.28i)4-s + (7.52 + 1.32i)5-s + (4.14 + 0.918i)6-s + (4.40 − 3.69i)7-s + (2.44 − 1.41i)8-s + (−8.69 + 2.33i)9-s + (−5.40 + 9.35i)10-s + (8.02 − 1.41i)11-s + (−3.22 + 5.06i)12-s + (−22.0 + 8.02i)13-s + (2.78 + 7.64i)14-s + (0.998 − 22.8i)15-s + (0.694 + 3.93i)16-s + (6.39 + 3.69i)17-s + ⋯
L(s)  = 1  + (−0.241 + 0.664i)2-s + (−0.130 − 0.991i)3-s + (−0.383 − 0.321i)4-s + (1.50 + 0.265i)5-s + (0.690 + 0.153i)6-s + (0.629 − 0.528i)7-s + (0.306 − 0.176i)8-s + (−0.965 + 0.258i)9-s + (−0.540 + 0.935i)10-s + (0.729 − 0.128i)11-s + (−0.268 + 0.421i)12-s + (−1.69 + 0.617i)13-s + (0.198 + 0.546i)14-s + (0.0665 − 1.52i)15-s + (0.0434 + 0.246i)16-s + (0.376 + 0.217i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.997 + 0.0725i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 54 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.997 + 0.0725i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(54\)    =    \(2 \cdot 3^{3}\)
Sign: $0.997 + 0.0725i$
Analytic conductor: \(1.47139\)
Root analytic conductor: \(1.21301\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{54} (23, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 54,\ (\ :1),\ 0.997 + 0.0725i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(1.15734 - 0.0420098i\)
\(L(\frac12)\) \(\approx\) \(1.15734 - 0.0420098i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (0.483 - 1.32i)T \)
3 \( 1 + (0.391 + 2.97i)T \)
good5 \( 1 + (-7.52 - 1.32i)T + (23.4 + 8.55i)T^{2} \)
7 \( 1 + (-4.40 + 3.69i)T + (8.50 - 48.2i)T^{2} \)
11 \( 1 + (-8.02 + 1.41i)T + (113. - 41.3i)T^{2} \)
13 \( 1 + (22.0 - 8.02i)T + (129. - 108. i)T^{2} \)
17 \( 1 + (-6.39 - 3.69i)T + (144.5 + 250. i)T^{2} \)
19 \( 1 + (7.80 + 13.5i)T + (-180.5 + 312. i)T^{2} \)
23 \( 1 + (19.9 - 23.8i)T + (-91.8 - 520. i)T^{2} \)
29 \( 1 + (9.68 - 26.6i)T + (-644. - 540. i)T^{2} \)
31 \( 1 + (-12.2 - 10.2i)T + (166. + 946. i)T^{2} \)
37 \( 1 + (-5.99 + 10.3i)T + (-684.5 - 1.18e3i)T^{2} \)
41 \( 1 + (-2.82 - 7.76i)T + (-1.28e3 + 1.08e3i)T^{2} \)
43 \( 1 + (7.82 + 44.3i)T + (-1.73e3 + 632. i)T^{2} \)
47 \( 1 + (43.4 + 51.7i)T + (-383. + 2.17e3i)T^{2} \)
53 \( 1 - 16.4iT - 2.80e3T^{2} \)
59 \( 1 + (-57.3 - 10.1i)T + (3.27e3 + 1.19e3i)T^{2} \)
61 \( 1 + (-54.6 + 45.8i)T + (646. - 3.66e3i)T^{2} \)
67 \( 1 + (47.1 - 17.1i)T + (3.43e3 - 2.88e3i)T^{2} \)
71 \( 1 + (-35.4 - 20.4i)T + (2.52e3 + 4.36e3i)T^{2} \)
73 \( 1 + (49.7 + 86.2i)T + (-2.66e3 + 4.61e3i)T^{2} \)
79 \( 1 + (72.4 + 26.3i)T + (4.78e3 + 4.01e3i)T^{2} \)
83 \( 1 + (-36.0 + 99.1i)T + (-5.27e3 - 4.42e3i)T^{2} \)
89 \( 1 + (0.302 - 0.174i)T + (3.96e3 - 6.85e3i)T^{2} \)
97 \( 1 + (-11.1 - 62.9i)T + (-8.84e3 + 3.21e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.58077349817188532013408969542, −14.17417273490219947001399850895, −13.18901748325731551696080311004, −11.76164261165693013207419396042, −10.21591979810096149385330540051, −9.051052491769334937187299131772, −7.45346337405598955660737900625, −6.52310837163220674091954218943, −5.22279972350027477935399161181, −1.85497383287076393216452859612, 2.36590486683348285496550295967, 4.66887554076336065137421856876, 5.86101738981120090715707502114, 8.372464282198834270060882717426, 9.753128063155606639688239273749, 10.00374708619459914866121433884, 11.59626516548291808063499681409, 12.63887665470485342755307541118, 14.23213424166924098921387922894, 14.80761738471473379537600217888

Graph of the $Z$-function along the critical line