L(s) = 1 | + (−0.483 + 1.32i)2-s + (−0.570 + 2.94i)3-s + (−1.53 − 1.28i)4-s + (3.98 + 0.702i)5-s + (−3.63 − 2.18i)6-s + (−10.1 + 8.49i)7-s + (2.44 − 1.41i)8-s + (−8.34 − 3.36i)9-s + (−2.86 + 4.95i)10-s + (13.3 − 2.35i)11-s + (4.66 − 3.77i)12-s + (17.4 − 6.34i)13-s + (−6.38 − 17.5i)14-s + (−4.34 + 11.3i)15-s + (0.694 + 3.93i)16-s + (13.8 + 8.01i)17-s + ⋯ |
L(s) = 1 | + (−0.241 + 0.664i)2-s + (−0.190 + 0.981i)3-s + (−0.383 − 0.321i)4-s + (0.797 + 0.140i)5-s + (−0.606 − 0.363i)6-s + (−1.44 + 1.21i)7-s + (0.306 − 0.176i)8-s + (−0.927 − 0.373i)9-s + (−0.286 + 0.495i)10-s + (1.21 − 0.214i)11-s + (0.388 − 0.314i)12-s + (1.34 − 0.488i)13-s + (−0.456 − 1.25i)14-s + (−0.289 + 0.756i)15-s + (0.0434 + 0.246i)16-s + (0.816 + 0.471i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.506−0.862i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(−0.506−0.862i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.506−0.862i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), −0.506−0.862i)
|
Particular Values
L(23) |
≈ |
0.476736+0.833189i |
L(21) |
≈ |
0.476736+0.833189i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.483−1.32i)T |
| 3 | 1+(0.570−2.94i)T |
good | 5 | 1+(−3.98−0.702i)T+(23.4+8.55i)T2 |
| 7 | 1+(10.1−8.49i)T+(8.50−48.2i)T2 |
| 11 | 1+(−13.3+2.35i)T+(113.−41.3i)T2 |
| 13 | 1+(−17.4+6.34i)T+(129.−108.i)T2 |
| 17 | 1+(−13.8−8.01i)T+(144.5+250.i)T2 |
| 19 | 1+(−0.327−0.566i)T+(−180.5+312.i)T2 |
| 23 | 1+(−4.24+5.05i)T+(−91.8−520.i)T2 |
| 29 | 1+(−0.466+1.28i)T+(−644.−540.i)T2 |
| 31 | 1+(14.3+12.0i)T+(166.+946.i)T2 |
| 37 | 1+(8.43−14.6i)T+(−684.5−1.18e3i)T2 |
| 41 | 1+(14.6+40.2i)T+(−1.28e3+1.08e3i)T2 |
| 43 | 1+(−0.0113−0.0645i)T+(−1.73e3+632.i)T2 |
| 47 | 1+(−30.0−35.8i)T+(−383.+2.17e3i)T2 |
| 53 | 1−14.3iT−2.80e3T2 |
| 59 | 1+(4.79+0.844i)T+(3.27e3+1.19e3i)T2 |
| 61 | 1+(12.0−10.1i)T+(646.−3.66e3i)T2 |
| 67 | 1+(37.1−13.5i)T+(3.43e3−2.88e3i)T2 |
| 71 | 1+(60.9+35.1i)T+(2.52e3+4.36e3i)T2 |
| 73 | 1+(34.1+59.1i)T+(−2.66e3+4.61e3i)T2 |
| 79 | 1+(−47.4−17.2i)T+(4.78e3+4.01e3i)T2 |
| 83 | 1+(−50.2+138.i)T+(−5.27e3−4.42e3i)T2 |
| 89 | 1+(17.2−9.98i)T+(3.96e3−6.85e3i)T2 |
| 97 | 1+(−18.3−104.i)T+(−8.84e3+3.21e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.65307975650822432801530542258, −14.69632027819863448680984770470, −13.47788069595621853071062588326, −12.07381275469583082843216979358, −10.44466501175413157190698438740, −9.414558328457004344990495284000, −8.757287012027398137909016332937, −6.20306429713994800271192291206, −5.82612214329808654653613878482, −3.49806634442314215538249746219,
1.25071308830012844554553736169, 3.56463644352525046976960997793, 6.13172776318420528214078018857, 7.15132024219230416899703673744, 9.001375871434019196588235088553, 10.01769694859273845319209684632, 11.34782534792233590028561040616, 12.58110461524586550875371538924, 13.52161848322369218281837179417, 14.01770488140292997348357037420