L(s) = 1 | + (1.39 + 0.245i)2-s + (2.89 + 0.783i)3-s + (1.87 + 0.684i)4-s + (−3.55 − 4.24i)5-s + (3.84 + 1.80i)6-s + (−10.2 + 3.73i)7-s + (2.44 + 1.41i)8-s + (7.77 + 4.53i)9-s + (−3.91 − 6.77i)10-s + (2.64 − 3.15i)11-s + (4.90 + 3.45i)12-s + (−0.953 − 5.40i)13-s + (−15.2 + 2.68i)14-s + (−6.98 − 15.0i)15-s + (3.06 + 2.57i)16-s + (4.10 − 2.37i)17-s + ⋯ |
L(s) = 1 | + (0.696 + 0.122i)2-s + (0.965 + 0.261i)3-s + (0.469 + 0.171i)4-s + (−0.711 − 0.848i)5-s + (0.640 + 0.300i)6-s + (−1.46 + 0.533i)7-s + (0.306 + 0.176i)8-s + (0.863 + 0.504i)9-s + (−0.391 − 0.677i)10-s + (0.240 − 0.286i)11-s + (0.408 + 0.287i)12-s + (−0.0733 − 0.416i)13-s + (−1.08 + 0.191i)14-s + (−0.465 − 1.00i)15-s + (0.191 + 0.160i)16-s + (0.241 − 0.139i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.980−0.195i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.980−0.195i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.980−0.195i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.980−0.195i)
|
Particular Values
L(23) |
≈ |
1.78451+0.175909i |
L(21) |
≈ |
1.78451+0.175909i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.39−0.245i)T |
| 3 | 1+(−2.89−0.783i)T |
good | 5 | 1+(3.55+4.24i)T+(−4.34+24.6i)T2 |
| 7 | 1+(10.2−3.73i)T+(37.5−31.4i)T2 |
| 11 | 1+(−2.64+3.15i)T+(−21.0−119.i)T2 |
| 13 | 1+(0.953+5.40i)T+(−158.+57.8i)T2 |
| 17 | 1+(−4.10+2.37i)T+(144.5−250.i)T2 |
| 19 | 1+(17.1−29.7i)T+(−180.5−312.i)T2 |
| 23 | 1+(−12.6+34.6i)T+(−405.−340.i)T2 |
| 29 | 1+(5.18+0.914i)T+(790.+287.i)T2 |
| 31 | 1+(−34.9−12.7i)T+(736.+617.i)T2 |
| 37 | 1+(12.1+21.1i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(22.6−3.98i)T+(1.57e3−574.i)T2 |
| 43 | 1+(−39.1−32.8i)T+(321.+1.82e3i)T2 |
| 47 | 1+(−28.3−77.8i)T+(−1.69e3+1.41e3i)T2 |
| 53 | 1+16.2iT−2.80e3T2 |
| 59 | 1+(45.6+54.4i)T+(−604.+3.42e3i)T2 |
| 61 | 1+(74.1−26.9i)T+(2.85e3−2.39e3i)T2 |
| 67 | 1+(12.1+68.7i)T+(−4.21e3+1.53e3i)T2 |
| 71 | 1+(65.9−38.0i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(−25.5+44.1i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(−5.51+31.2i)T+(−5.86e3−2.13e3i)T2 |
| 83 | 1+(−28.7−5.06i)T+(6.47e3+2.35e3i)T2 |
| 89 | 1+(69.2+40.0i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(−36.3−30.5i)T+(1.63e3+9.26e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.17871365251724711628717397418, −14.08222796410064882614072204960, −12.63355712919703711768016694882, −12.48076905814130625400107235185, −10.37587748409041762662043185921, −9.019511237889781641579460693233, −7.988111572277046639272926992061, −6.26239629548866079371251223349, −4.37797044776769704730544168683, −3.06368573362676867583507205708,
2.93446409796655742873161744395, 3.98932022230880128229667946263, 6.67814947063367080078474225480, 7.30357415650357885706083834594, 9.212999082114188670185167904760, 10.44874976614386010326234760048, 11.87304591500109595285912489799, 13.14160855340712958238437132175, 13.77568513012028554355616473304, 15.20216216224770645491969665634