L(s) = 1 | + (1.39 + 0.245i)2-s + (−1.56 + 2.55i)3-s + (1.87 + 0.684i)4-s + (1.85 + 2.21i)5-s + (−2.81 + 3.17i)6-s + (2.17 − 0.791i)7-s + (2.44 + 1.41i)8-s + (−4.07 − 8.02i)9-s + (2.04 + 3.54i)10-s + (−0.401 + 0.478i)11-s + (−4.69 + 3.73i)12-s + (−4.06 − 23.0i)13-s + (3.22 − 0.568i)14-s + (−8.58 + 1.27i)15-s + (3.06 + 2.57i)16-s + (2.71 − 1.56i)17-s + ⋯ |
L(s) = 1 | + (0.696 + 0.122i)2-s + (−0.523 + 0.852i)3-s + (0.469 + 0.171i)4-s + (0.371 + 0.443i)5-s + (−0.468 + 0.529i)6-s + (0.310 − 0.113i)7-s + (0.306 + 0.176i)8-s + (−0.452 − 0.891i)9-s + (0.204 + 0.354i)10-s + (−0.0364 + 0.0434i)11-s + (−0.391 + 0.311i)12-s + (−0.312 − 1.77i)13-s + (0.230 − 0.0405i)14-s + (−0.572 + 0.0851i)15-s + (0.191 + 0.160i)16-s + (0.159 − 0.0922i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.614−0.788i)Λ(3−s)
Λ(s)=(=(54s/2ΓC(s+1)L(s)(0.614−0.788i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.614−0.788i
|
Analytic conductor: |
1.47139 |
Root analytic conductor: |
1.21301 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(29,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :1), 0.614−0.788i)
|
Particular Values
L(23) |
≈ |
1.34354+0.656233i |
L(21) |
≈ |
1.34354+0.656233i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1.39−0.245i)T |
| 3 | 1+(1.56−2.55i)T |
good | 5 | 1+(−1.85−2.21i)T+(−4.34+24.6i)T2 |
| 7 | 1+(−2.17+0.791i)T+(37.5−31.4i)T2 |
| 11 | 1+(0.401−0.478i)T+(−21.0−119.i)T2 |
| 13 | 1+(4.06+23.0i)T+(−158.+57.8i)T2 |
| 17 | 1+(−2.71+1.56i)T+(144.5−250.i)T2 |
| 19 | 1+(−2.04+3.53i)T+(−180.5−312.i)T2 |
| 23 | 1+(15.5−42.6i)T+(−405.−340.i)T2 |
| 29 | 1+(−19.6−3.46i)T+(790.+287.i)T2 |
| 31 | 1+(42.6+15.5i)T+(736.+617.i)T2 |
| 37 | 1+(−18.7−32.5i)T+(−684.5+1.18e3i)T2 |
| 41 | 1+(45.6−8.05i)T+(1.57e3−574.i)T2 |
| 43 | 1+(−46.3−38.9i)T+(321.+1.82e3i)T2 |
| 47 | 1+(−1.06−2.91i)T+(−1.69e3+1.41e3i)T2 |
| 53 | 1+79.9iT−2.80e3T2 |
| 59 | 1+(41.9+50.0i)T+(−604.+3.42e3i)T2 |
| 61 | 1+(33.1−12.0i)T+(2.85e3−2.39e3i)T2 |
| 67 | 1+(4.92+27.9i)T+(−4.21e3+1.53e3i)T2 |
| 71 | 1+(70.7−40.8i)T+(2.52e3−4.36e3i)T2 |
| 73 | 1+(12.6−21.8i)T+(−2.66e3−4.61e3i)T2 |
| 79 | 1+(−11.5+65.5i)T+(−5.86e3−2.13e3i)T2 |
| 83 | 1+(−49.1−8.66i)T+(6.47e3+2.35e3i)T2 |
| 89 | 1+(−111.−64.1i)T+(3.96e3+6.85e3i)T2 |
| 97 | 1+(−107.−90.5i)T+(1.63e3+9.26e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.22497596551513550842612500670, −14.38061859726868332974800811368, −13.07370372014809379021288880818, −11.78342261320214771345683433646, −10.70270539208830089317235173992, −9.755448906587822172692975534851, −7.80014655059487420909978670640, −6.07257726493750000589360452713, −5.02302622160369566363924687004, −3.27936556529763431089611201038,
1.94395402201650362130461327538, 4.63955033684825289650563767454, 6.00955182321320734971830951379, 7.21892607507845779132002803433, 8.883365622216489015368833170959, 10.67231295341103942776613561237, 11.87964851835524931595408677656, 12.57729168392786659695421338675, 13.79393555398054120187863889657, 14.50746877639781297391740731437