L(s) = 1 | + (7.27 − 8.66i)2-s + (13.3 − 79.8i)3-s + (−22.2 − 126. i)4-s + (258. − 711. i)5-s + (−595. − 696. i)6-s + (690. − 3.91e3i)7-s + (−1.25e3 − 724. i)8-s + (−6.20e3 − 2.12e3i)9-s + (−4.28e3 − 7.41e3i)10-s + (9.36e3 + 2.57e4i)11-s + (−1.03e4 + 98.2i)12-s + (3.45e4 − 2.90e4i)13-s + (−2.89e4 − 3.44e4i)14-s + (−5.34e4 − 3.01e4i)15-s + (−1.53e4 + 5.60e3i)16-s + (6.12e4 − 3.53e4i)17-s + ⋯ |
L(s) = 1 | + (0.454 − 0.541i)2-s + (0.164 − 0.986i)3-s + (−0.0868 − 0.492i)4-s + (0.414 − 1.13i)5-s + (−0.459 − 0.537i)6-s + (0.287 − 1.63i)7-s + (−0.306 − 0.176i)8-s + (−0.946 − 0.324i)9-s + (−0.428 − 0.741i)10-s + (0.639 + 1.75i)11-s + (−0.499 + 0.00473i)12-s + (1.21 − 1.01i)13-s + (−0.753 − 0.897i)14-s + (−1.05 − 0.595i)15-s + (−0.234 + 0.0855i)16-s + (0.733 − 0.423i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.999−0.0297i)Λ(9−s)
Λ(s)=(=(54s/2ΓC(s+4)L(s)(−0.999−0.0297i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.999−0.0297i
|
Analytic conductor: |
21.9984 |
Root analytic conductor: |
4.69024 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :4), −0.999−0.0297i)
|
Particular Values
L(29) |
≈ |
0.0427853+2.87596i |
L(21) |
≈ |
0.0427853+2.87596i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−7.27+8.66i)T |
| 3 | 1+(−13.3+79.8i)T |
good | 5 | 1+(−258.+711.i)T+(−2.99e5−2.51e5i)T2 |
| 7 | 1+(−690.+3.91e3i)T+(−5.41e6−1.97e6i)T2 |
| 11 | 1+(−9.36e3−2.57e4i)T+(−1.64e8+1.37e8i)T2 |
| 13 | 1+(−3.45e4+2.90e4i)T+(1.41e8−8.03e8i)T2 |
| 17 | 1+(−6.12e4+3.53e4i)T+(3.48e9−6.04e9i)T2 |
| 19 | 1+(6.79e4−1.17e5i)T+(−8.49e9−1.47e10i)T2 |
| 23 | 1+(−1.76e5+3.10e4i)T+(7.35e10−2.67e10i)T2 |
| 29 | 1+(5.77e5−6.88e5i)T+(−8.68e10−4.92e11i)T2 |
| 31 | 1+(−3.66e4−2.07e5i)T+(−8.01e11+2.91e11i)T2 |
| 37 | 1+(−6.81e5−1.18e6i)T+(−1.75e12+3.04e12i)T2 |
| 41 | 1+(2.76e5+3.30e5i)T+(−1.38e12+7.86e12i)T2 |
| 43 | 1+(1.34e6−4.89e5i)T+(8.95e12−7.51e12i)T2 |
| 47 | 1+(−4.35e6−7.68e5i)T+(2.23e13+8.14e12i)T2 |
| 53 | 1+4.62e6iT−6.22e13T2 |
| 59 | 1+(−2.57e6+7.07e6i)T+(−1.12e14−9.43e13i)T2 |
| 61 | 1+(−4.16e4+2.36e5i)T+(−1.80e14−6.55e13i)T2 |
| 67 | 1+(−1.91e7+1.60e7i)T+(7.05e13−3.99e14i)T2 |
| 71 | 1+(−3.71e7+2.14e7i)T+(3.22e14−5.59e14i)T2 |
| 73 | 1+(9.53e6−1.65e7i)T+(−4.03e14−6.98e14i)T2 |
| 79 | 1+(−2.53e7−2.12e7i)T+(2.63e14+1.49e15i)T2 |
| 83 | 1+(4.49e7−5.35e7i)T+(−3.91e14−2.21e15i)T2 |
| 89 | 1+(−4.16e7−2.40e7i)T+(1.96e15+3.40e15i)T2 |
| 97 | 1+(8.58e7−3.12e7i)T+(6.00e15−5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.93726684131396316141496444337, −12.38342603769200019341270594650, −10.85899314911054724427007971285, −9.598493801347303789457466090013, −8.095853775550494426571685623140, −6.84051588143840199351203569342, −5.18914629074992648330219166831, −3.77006389383881436947125961238, −1.54835647217790519136127455683, −0.957292136891916134373912572726,
2.59945405410264058090911195694, 3.75399423217055683249051995156, 5.66471230609176311416989816907, 6.28229438871135467071267719029, 8.505775907881877060456757622076, 9.172730291572501689104624644138, 11.00884157098562948592571241199, 11.57664799288023082511738212406, 13.57229141477462694363171923569, 14.44206535102591722411654111248