L(s) = 1 | + (7.27 − 8.66i)2-s + (−76.9 + 25.1i)3-s + (−22.2 − 126. i)4-s + (421. − 1.15e3i)5-s + (−341. + 850. i)6-s + (−165. + 937. i)7-s + (−1.25e3 − 724. i)8-s + (5.29e3 − 3.87e3i)9-s + (−6.96e3 − 1.20e4i)10-s + (−1.20e3 − 3.31e3i)11-s + (4.88e3 + 9.14e3i)12-s + (2.44e4 − 2.05e4i)13-s + (6.91e3 + 8.24e3i)14-s + (−3.27e3 + 9.96e4i)15-s + (−1.53e4 + 5.60e3i)16-s + (−8.20e4 + 4.73e4i)17-s + ⋯ |
L(s) = 1 | + (0.454 − 0.541i)2-s + (−0.950 + 0.310i)3-s + (−0.0868 − 0.492i)4-s + (0.673 − 1.85i)5-s + (−0.263 + 0.656i)6-s + (−0.0688 + 0.390i)7-s + (−0.306 − 0.176i)8-s + (0.806 − 0.591i)9-s + (−0.696 − 1.20i)10-s + (−0.0825 − 0.226i)11-s + (0.235 + 0.440i)12-s + (0.855 − 0.717i)13-s + (0.180 + 0.214i)14-s + (−0.0647 + 1.96i)15-s + (−0.234 + 0.0855i)16-s + (−0.982 + 0.567i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(−0.987−0.156i)Λ(9−s)
Λ(s)=(=(54s/2ΓC(s+4)L(s)(−0.987−0.156i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
−0.987−0.156i
|
Analytic conductor: |
21.9984 |
Root analytic conductor: |
4.69024 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :4), −0.987−0.156i)
|
Particular Values
L(29) |
≈ |
0.0972007+1.23735i |
L(21) |
≈ |
0.0972007+1.23735i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−7.27+8.66i)T |
| 3 | 1+(76.9−25.1i)T |
good | 5 | 1+(−421.+1.15e3i)T+(−2.99e5−2.51e5i)T2 |
| 7 | 1+(165.−937.i)T+(−5.41e6−1.97e6i)T2 |
| 11 | 1+(1.20e3+3.31e3i)T+(−1.64e8+1.37e8i)T2 |
| 13 | 1+(−2.44e4+2.05e4i)T+(1.41e8−8.03e8i)T2 |
| 17 | 1+(8.20e4−4.73e4i)T+(3.48e9−6.04e9i)T2 |
| 19 | 1+(−4.97e4+8.62e4i)T+(−8.49e9−1.47e10i)T2 |
| 23 | 1+(4.73e5−8.34e4i)T+(7.35e10−2.67e10i)T2 |
| 29 | 1+(2.47e5−2.95e5i)T+(−8.68e10−4.92e11i)T2 |
| 31 | 1+(−1.36e5−7.72e5i)T+(−8.01e11+2.91e11i)T2 |
| 37 | 1+(9.49e5+1.64e6i)T+(−1.75e12+3.04e12i)T2 |
| 41 | 1+(−9.60e5−1.14e6i)T+(−1.38e12+7.86e12i)T2 |
| 43 | 1+(−1.96e6+7.14e5i)T+(8.95e12−7.51e12i)T2 |
| 47 | 1+(1.52e6+2.68e5i)T+(2.23e13+8.14e12i)T2 |
| 53 | 1+5.10e6iT−6.22e13T2 |
| 59 | 1+(6.95e6−1.91e7i)T+(−1.12e14−9.43e13i)T2 |
| 61 | 1+(−4.65e6+2.63e7i)T+(−1.80e14−6.55e13i)T2 |
| 67 | 1+(−1.26e7+1.06e7i)T+(7.05e13−3.99e14i)T2 |
| 71 | 1+(1.46e7−8.44e6i)T+(3.22e14−5.59e14i)T2 |
| 73 | 1+(1.24e7−2.15e7i)T+(−4.03e14−6.98e14i)T2 |
| 79 | 1+(−2.32e7−1.95e7i)T+(2.63e14+1.49e15i)T2 |
| 83 | 1+(−4.57e7+5.45e7i)T+(−3.91e14−2.21e15i)T2 |
| 89 | 1+(3.94e7+2.27e7i)T+(1.96e15+3.40e15i)T2 |
| 97 | 1+(9.43e7−3.43e7i)T+(6.00e15−5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.82289105966801995819595407283, −12.11455752121183591114139318506, −10.84120560534521377858541789621, −9.599014518042901858663153022191, −8.585829949516769315157033067192, −6.02621512984439236728738590781, −5.30527153557864507156758707914, −4.12673528423166762276872238221, −1.64960207423197928283419709087, −0.41269008338249187991376937497,
2.14443562550067043895376429121, 3.99864516019777268139554457741, 5.92078186184846482541973959957, 6.58317225023893518819144821950, 7.55090944932694686180012082600, 9.867759024436916672481215309665, 10.90139482001569140030664232022, 11.81598291597697802360038867237, 13.52012119870093442117439393203, 13.99154257163845500745944460511