L(s) = 1 | + (7.27 − 8.66i)2-s + (−36.0 + 72.5i)3-s + (−22.2 − 126. i)4-s + (0.862 − 2.37i)5-s + (366. + 839. i)6-s + (117. − 669. i)7-s + (−1.25e3 − 724. i)8-s + (−3.96e3 − 5.23e3i)9-s + (−14.2 − 24.7i)10-s + (3.73e3 + 1.02e4i)11-s + (9.94e3 + 2.93e3i)12-s + (−5.25e3 + 4.41e3i)13-s + (−4.94e3 − 5.88e3i)14-s + (140. + 148. i)15-s + (−1.53e4 + 5.60e3i)16-s + (9.61e4 − 5.54e4i)17-s + ⋯ |
L(s) = 1 | + (0.454 − 0.541i)2-s + (−0.445 + 0.895i)3-s + (−0.0868 − 0.492i)4-s + (0.00138 − 0.00379i)5-s + (0.282 + 0.648i)6-s + (0.0491 − 0.278i)7-s + (−0.306 − 0.176i)8-s + (−0.603 − 0.797i)9-s + (−0.00142 − 0.00247i)10-s + (0.254 + 0.700i)11-s + (0.479 + 0.141i)12-s + (−0.184 + 0.154i)13-s + (−0.128 − 0.153i)14-s + (0.00278 + 0.00292i)15-s + (−0.234 + 0.0855i)16-s + (1.15 − 0.664i)17-s + ⋯ |
Λ(s)=(=(54s/2ΓC(s)L(s)(0.607+0.794i)Λ(9−s)
Λ(s)=(=(54s/2ΓC(s+4)L(s)(0.607+0.794i)Λ(1−s)
Degree: |
2 |
Conductor: |
54
= 2⋅33
|
Sign: |
0.607+0.794i
|
Analytic conductor: |
21.9984 |
Root analytic conductor: |
4.69024 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ54(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 54, ( :4), 0.607+0.794i)
|
Particular Values
L(29) |
≈ |
1.77231−0.876390i |
L(21) |
≈ |
1.77231−0.876390i |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−7.27+8.66i)T |
| 3 | 1+(36.0−72.5i)T |
good | 5 | 1+(−0.862+2.37i)T+(−2.99e5−2.51e5i)T2 |
| 7 | 1+(−117.+669.i)T+(−5.41e6−1.97e6i)T2 |
| 11 | 1+(−3.73e3−1.02e4i)T+(−1.64e8+1.37e8i)T2 |
| 13 | 1+(5.25e3−4.41e3i)T+(1.41e8−8.03e8i)T2 |
| 17 | 1+(−9.61e4+5.54e4i)T+(3.48e9−6.04e9i)T2 |
| 19 | 1+(−1.20e5+2.09e5i)T+(−8.49e9−1.47e10i)T2 |
| 23 | 1+(−9.71e4+1.71e4i)T+(7.35e10−2.67e10i)T2 |
| 29 | 1+(−3.29e5+3.92e5i)T+(−8.68e10−4.92e11i)T2 |
| 31 | 1+(2.39e5+1.35e6i)T+(−8.01e11+2.91e11i)T2 |
| 37 | 1+(−6.30e5−1.09e6i)T+(−1.75e12+3.04e12i)T2 |
| 41 | 1+(1.77e6+2.11e6i)T+(−1.38e12+7.86e12i)T2 |
| 43 | 1+(1.23e5−4.48e4i)T+(8.95e12−7.51e12i)T2 |
| 47 | 1+(−1.64e6−2.89e5i)T+(2.23e13+8.14e12i)T2 |
| 53 | 1+6.15e6iT−6.22e13T2 |
| 59 | 1+(9.01e5−2.47e6i)T+(−1.12e14−9.43e13i)T2 |
| 61 | 1+(3.36e5−1.90e6i)T+(−1.80e14−6.55e13i)T2 |
| 67 | 1+(1.28e7−1.07e7i)T+(7.05e13−3.99e14i)T2 |
| 71 | 1+(3.26e6−1.88e6i)T+(3.22e14−5.59e14i)T2 |
| 73 | 1+(1.56e7−2.71e7i)T+(−4.03e14−6.98e14i)T2 |
| 79 | 1+(1.69e7+1.41e7i)T+(2.63e14+1.49e15i)T2 |
| 83 | 1+(−1.89e7+2.26e7i)T+(−3.91e14−2.21e15i)T2 |
| 89 | 1+(−1.93e7−1.11e7i)T+(1.96e15+3.40e15i)T2 |
| 97 | 1+(9.38e7−3.41e7i)T+(6.00e15−5.03e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.45949805058589343058100893956, −12.04334562207179142497449113551, −11.26985322081304057452690532294, −10.03053898156322007065172863435, −9.215674868689897486537272719855, −7.10028883742512344221767276223, −5.41322606678106994503994107948, −4.39977403609110820708820087103, −2.94618311867489712991654687113, −0.75385045735363171722518786766,
1.23099644412416907325072612883, 3.22680060865903575897799382847, 5.28655266714776007388777527677, 6.21436292847471236857966738997, 7.54713182224350653175589677557, 8.571653697953031019591146949699, 10.49659962295683198099281514593, 11.98558355249820981935759155540, 12.55744844687418902099979777333, 13.91932041362423918350778393296